Add ignored files

feature/streamed-package
kaetemi 5 years ago committed by Jan Boon
parent dedb0cbc08
commit e9c175d3f3

1
.gitignore vendored

@ -142,7 +142,6 @@ moc_*.cpp
*.cache
*.patch
*.7z
3rdParty
.svn
thumbs.db
Thumbs.db

@ -0,0 +1,202 @@
/* 7z.h -- 7z interface
2017-04-03 : Igor Pavlov : Public domain */
#ifndef __7Z_H
#define __7Z_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define k7zStartHeaderSize 0x20
#define k7zSignatureSize 6
extern const Byte k7zSignature[k7zSignatureSize];
typedef struct
{
const Byte *Data;
size_t Size;
} CSzData;
/* CSzCoderInfo & CSzFolder support only default methods */
typedef struct
{
size_t PropsOffset;
UInt32 MethodID;
Byte NumStreams;
Byte PropsSize;
} CSzCoderInfo;
typedef struct
{
UInt32 InIndex;
UInt32 OutIndex;
} CSzBond;
#define SZ_NUM_CODERS_IN_FOLDER_MAX 4
#define SZ_NUM_BONDS_IN_FOLDER_MAX 3
#define SZ_NUM_PACK_STREAMS_IN_FOLDER_MAX 4
typedef struct
{
UInt32 NumCoders;
UInt32 NumBonds;
UInt32 NumPackStreams;
UInt32 UnpackStream;
UInt32 PackStreams[SZ_NUM_PACK_STREAMS_IN_FOLDER_MAX];
CSzBond Bonds[SZ_NUM_BONDS_IN_FOLDER_MAX];
CSzCoderInfo Coders[SZ_NUM_CODERS_IN_FOLDER_MAX];
} CSzFolder;
SRes SzGetNextFolderItem(CSzFolder *f, CSzData *sd);
typedef struct
{
UInt32 Low;
UInt32 High;
} CNtfsFileTime;
typedef struct
{
Byte *Defs; /* MSB 0 bit numbering */
UInt32 *Vals;
} CSzBitUi32s;
typedef struct
{
Byte *Defs; /* MSB 0 bit numbering */
// UInt64 *Vals;
CNtfsFileTime *Vals;
} CSzBitUi64s;
#define SzBitArray_Check(p, i) (((p)[(i) >> 3] & (0x80 >> ((i) & 7))) != 0)
#define SzBitWithVals_Check(p, i) ((p)->Defs && ((p)->Defs[(i) >> 3] & (0x80 >> ((i) & 7))) != 0)
typedef struct
{
UInt32 NumPackStreams;
UInt32 NumFolders;
UInt64 *PackPositions; // NumPackStreams + 1
CSzBitUi32s FolderCRCs; // NumFolders
size_t *FoCodersOffsets; // NumFolders + 1
UInt32 *FoStartPackStreamIndex; // NumFolders + 1
UInt32 *FoToCoderUnpackSizes; // NumFolders + 1
Byte *FoToMainUnpackSizeIndex; // NumFolders
UInt64 *CoderUnpackSizes; // for all coders in all folders
Byte *CodersData;
} CSzAr;
UInt64 SzAr_GetFolderUnpackSize(const CSzAr *p, UInt32 folderIndex);
SRes SzAr_DecodeFolder(const CSzAr *p, UInt32 folderIndex,
ILookInStream *stream, UInt64 startPos,
Byte *outBuffer, size_t outSize,
ISzAllocPtr allocMain);
typedef struct
{
CSzAr db;
UInt64 startPosAfterHeader;
UInt64 dataPos;
UInt32 NumFiles;
UInt64 *UnpackPositions; // NumFiles + 1
// Byte *IsEmptyFiles;
Byte *IsDirs;
CSzBitUi32s CRCs;
CSzBitUi32s Attribs;
// CSzBitUi32s Parents;
CSzBitUi64s MTime;
CSzBitUi64s CTime;
UInt32 *FolderToFile; // NumFolders + 1
UInt32 *FileToFolder; // NumFiles
size_t *FileNameOffsets; /* in 2-byte steps */
Byte *FileNames; /* UTF-16-LE */
} CSzArEx;
#define SzArEx_IsDir(p, i) (SzBitArray_Check((p)->IsDirs, i))
#define SzArEx_GetFileSize(p, i) ((p)->UnpackPositions[(i) + 1] - (p)->UnpackPositions[i])
void SzArEx_Init(CSzArEx *p);
void SzArEx_Free(CSzArEx *p, ISzAllocPtr alloc);
UInt64 SzArEx_GetFolderStreamPos(const CSzArEx *p, UInt32 folderIndex, UInt32 indexInFolder);
int SzArEx_GetFolderFullPackSize(const CSzArEx *p, UInt32 folderIndex, UInt64 *resSize);
/*
if dest == NULL, the return value specifies the required size of the buffer,
in 16-bit characters, including the null-terminating character.
if dest != NULL, the return value specifies the number of 16-bit characters that
are written to the dest, including the null-terminating character. */
size_t SzArEx_GetFileNameUtf16(const CSzArEx *p, size_t fileIndex, UInt16 *dest);
/*
size_t SzArEx_GetFullNameLen(const CSzArEx *p, size_t fileIndex);
UInt16 *SzArEx_GetFullNameUtf16_Back(const CSzArEx *p, size_t fileIndex, UInt16 *dest);
*/
/*
SzArEx_Extract extracts file from archive
*outBuffer must be 0 before first call for each new archive.
Extracting cache:
If you need to decompress more than one file, you can send
these values from previous call:
*blockIndex,
*outBuffer,
*outBufferSize
You can consider "*outBuffer" as cache of solid block. If your archive is solid,
it will increase decompression speed.
If you use external function, you can declare these 3 cache variables
(blockIndex, outBuffer, outBufferSize) as static in that external function.
Free *outBuffer and set *outBuffer to 0, if you want to flush cache.
*/
SRes SzArEx_Extract(
const CSzArEx *db,
ILookInStream *inStream,
UInt32 fileIndex, /* index of file */
UInt32 *blockIndex, /* index of solid block */
Byte **outBuffer, /* pointer to pointer to output buffer (allocated with allocMain) */
size_t *outBufferSize, /* buffer size for output buffer */
size_t *offset, /* offset of stream for required file in *outBuffer */
size_t *outSizeProcessed, /* size of file in *outBuffer */
ISzAllocPtr allocMain,
ISzAllocPtr allocTemp);
/*
SzArEx_Open Errors:
SZ_ERROR_NO_ARCHIVE
SZ_ERROR_ARCHIVE
SZ_ERROR_UNSUPPORTED
SZ_ERROR_MEM
SZ_ERROR_CRC
SZ_ERROR_INPUT_EOF
SZ_ERROR_FAIL
*/
SRes SzArEx_Open(CSzArEx *p, ILookInStream *inStream,
ISzAllocPtr allocMain, ISzAllocPtr allocTemp);
EXTERN_C_END
#endif

@ -0,0 +1,80 @@
/* 7zAlloc.c -- Allocation functions
2017-04-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <stdlib.h>
#include "7zAlloc.h"
/* #define _SZ_ALLOC_DEBUG */
/* use _SZ_ALLOC_DEBUG to debug alloc/free operations */
#ifdef _SZ_ALLOC_DEBUG
#ifdef _WIN32
#include <windows.h>
#endif
#include <stdio.h>
int g_allocCount = 0;
int g_allocCountTemp = 0;
#endif
void *SzAlloc(ISzAllocPtr p, size_t size)
{
UNUSED_VAR(p);
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc %10u bytes; count = %10d", (unsigned)size, g_allocCount);
g_allocCount++;
#endif
return malloc(size);
}
void SzFree(ISzAllocPtr p, void *address)
{
UNUSED_VAR(p);
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
{
g_allocCount--;
fprintf(stderr, "\nFree; count = %10d", g_allocCount);
}
#endif
free(address);
}
void *SzAllocTemp(ISzAllocPtr p, size_t size)
{
UNUSED_VAR(p);
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc_temp %10u bytes; count = %10d", (unsigned)size, g_allocCountTemp);
g_allocCountTemp++;
#ifdef _WIN32
return HeapAlloc(GetProcessHeap(), 0, size);
#endif
#endif
return malloc(size);
}
void SzFreeTemp(ISzAllocPtr p, void *address)
{
UNUSED_VAR(p);
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
{
g_allocCountTemp--;
fprintf(stderr, "\nFree_temp; count = %10d", g_allocCountTemp);
}
#ifdef _WIN32
HeapFree(GetProcessHeap(), 0, address);
return;
#endif
#endif
free(address);
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,36 @@
/* 7zBuf.c -- Byte Buffer
2017-04-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "7zBuf.h"
void Buf_Init(CBuf *p)
{
p->data = 0;
p->size = 0;
}
int Buf_Create(CBuf *p, size_t size, ISzAllocPtr alloc)
{
p->size = 0;
if (size == 0)
{
p->data = 0;
return 1;
}
p->data = (Byte *)ISzAlloc_Alloc(alloc, size);
if (p->data)
{
p->size = size;
return 1;
}
return 0;
}
void Buf_Free(CBuf *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->data);
p->data = 0;
p->size = 0;
}

@ -0,0 +1,35 @@
/* 7zBuf.h -- Byte Buffer
2017-04-03 : Igor Pavlov : Public domain */
#ifndef __7Z_BUF_H
#define __7Z_BUF_H
#include "7zTypes.h"
EXTERN_C_BEGIN
typedef struct
{
Byte *data;
size_t size;
} CBuf;
void Buf_Init(CBuf *p);
int Buf_Create(CBuf *p, size_t size, ISzAllocPtr alloc);
void Buf_Free(CBuf *p, ISzAllocPtr alloc);
typedef struct
{
Byte *data;
size_t size;
size_t pos;
} CDynBuf;
void DynBuf_Construct(CDynBuf *p);
void DynBuf_SeekToBeg(CDynBuf *p);
int DynBuf_Write(CDynBuf *p, const Byte *buf, size_t size, ISzAllocPtr alloc);
void DynBuf_Free(CDynBuf *p, ISzAllocPtr alloc);
EXTERN_C_END
#endif

@ -0,0 +1,52 @@
/* 7zBuf2.c -- Byte Buffer
2017-04-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
#include "7zBuf.h"
void DynBuf_Construct(CDynBuf *p)
{
p->data = 0;
p->size = 0;
p->pos = 0;
}
void DynBuf_SeekToBeg(CDynBuf *p)
{
p->pos = 0;
}
int DynBuf_Write(CDynBuf *p, const Byte *buf, size_t size, ISzAllocPtr alloc)
{
if (size > p->size - p->pos)
{
size_t newSize = p->pos + size;
Byte *data;
newSize += newSize / 4;
data = (Byte *)ISzAlloc_Alloc(alloc, newSize);
if (!data)
return 0;
p->size = newSize;
if (p->pos != 0)
memcpy(data, p->data, p->pos);
ISzAlloc_Free(alloc, p->data);
p->data = data;
}
if (size != 0)
{
memcpy(p->data + p->pos, buf, size);
p->pos += size;
}
return 1;
}
void DynBuf_Free(CDynBuf *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->data);
p->data = 0;
p->size = 0;
p->pos = 0;
}

@ -0,0 +1,128 @@
/* 7zCrc.c -- CRC32 init
2017-06-06 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "7zCrc.h"
#include "CpuArch.h"
#define kCrcPoly 0xEDB88320
#ifdef MY_CPU_LE
#define CRC_NUM_TABLES 8
#else
#define CRC_NUM_TABLES 9
#define CRC_UINT32_SWAP(v) ((v >> 24) | ((v >> 8) & 0xFF00) | ((v << 8) & 0xFF0000) | (v << 24))
UInt32 MY_FAST_CALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 MY_FAST_CALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
#ifndef MY_CPU_BE
UInt32 MY_FAST_CALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
typedef UInt32 (MY_FAST_CALL *CRC_FUNC)(UInt32 v, const void *data, size_t size, const UInt32 *table);
CRC_FUNC g_CrcUpdateT4;
CRC_FUNC g_CrcUpdateT8;
CRC_FUNC g_CrcUpdate;
UInt32 g_CrcTable[256 * CRC_NUM_TABLES];
UInt32 MY_FAST_CALL CrcUpdate(UInt32 v, const void *data, size_t size)
{
return g_CrcUpdate(v, data, size, g_CrcTable);
}
UInt32 MY_FAST_CALL CrcCalc(const void *data, size_t size)
{
return g_CrcUpdate(CRC_INIT_VAL, data, size, g_CrcTable) ^ CRC_INIT_VAL;
}
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 MY_FAST_CALL CrcUpdateT1(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
const Byte *pEnd = p + size;
for (; p != pEnd; p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
void MY_FAST_CALL CrcGenerateTable()
{
UInt32 i;
for (i = 0; i < 256; i++)
{
UInt32 r = i;
unsigned j;
for (j = 0; j < 8; j++)
r = (r >> 1) ^ (kCrcPoly & ((UInt32)0 - (r & 1)));
g_CrcTable[i] = r;
}
for (i = 256; i < 256 * CRC_NUM_TABLES; i++)
{
UInt32 r = g_CrcTable[(size_t)i - 256];
g_CrcTable[i] = g_CrcTable[r & 0xFF] ^ (r >> 8);
}
#if CRC_NUM_TABLES < 4
g_CrcUpdate = CrcUpdateT1;
#else
#ifdef MY_CPU_LE
g_CrcUpdateT4 = CrcUpdateT4;
g_CrcUpdate = CrcUpdateT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT8;
#ifdef MY_CPU_X86_OR_AMD64
if (!CPU_Is_InOrder())
#endif
g_CrcUpdate = CrcUpdateT8;
#endif
#else
{
#ifndef MY_CPU_BE
UInt32 k = 0x01020304;
const Byte *p = (const Byte *)&k;
if (p[0] == 4 && p[1] == 3)
{
g_CrcUpdateT4 = CrcUpdateT4;
g_CrcUpdate = CrcUpdateT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT8;
g_CrcUpdate = CrcUpdateT8;
#endif
}
else if (p[0] != 1 || p[1] != 2)
g_CrcUpdate = CrcUpdateT1;
else
#endif
{
for (i = 256 * CRC_NUM_TABLES - 1; i >= 256; i--)
{
UInt32 x = g_CrcTable[(size_t)i - 256];
g_CrcTable[i] = CRC_UINT32_SWAP(x);
}
g_CrcUpdateT4 = CrcUpdateT1_BeT4;
g_CrcUpdate = CrcUpdateT1_BeT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT1_BeT8;
g_CrcUpdate = CrcUpdateT1_BeT8;
#endif
}
}
#endif
#endif
}

@ -0,0 +1,115 @@
/* 7zCrcOpt.c -- CRC32 calculation
2017-04-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#ifndef MY_CPU_BE
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 MY_FAST_CALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
v ^= *(const UInt32 *)p;
v =
(table + 0x300)[((v ) & 0xFF)]
^ (table + 0x200)[((v >> 8) & 0xFF)]
^ (table + 0x100)[((v >> 16) & 0xFF)]
^ (table + 0x000)[((v >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 7) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
for (; size >= 8; size -= 8, p += 8)
{
UInt32 d;
v ^= *(const UInt32 *)p;
v =
(table + 0x700)[((v ) & 0xFF)]
^ (table + 0x600)[((v >> 8) & 0xFF)]
^ (table + 0x500)[((v >> 16) & 0xFF)]
^ (table + 0x400)[((v >> 24))];
d = *((const UInt32 *)p + 1);
v ^=
(table + 0x300)[((d ) & 0xFF)]
^ (table + 0x200)[((d >> 8) & 0xFF)]
^ (table + 0x100)[((d >> 16) & 0xFF)]
^ (table + 0x000)[((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
#endif
#ifndef MY_CPU_LE
#define CRC_UINT32_SWAP(v) ((v >> 24) | ((v >> 8) & 0xFF00) | ((v << 8) & 0xFF0000) | (v << 24))
#define CRC_UPDATE_BYTE_2_BE(crc, b) (table[(((crc) >> 24) ^ (b))] ^ ((crc) << 8))
UInt32 MY_FAST_CALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
table += 0x100;
v = CRC_UINT32_SWAP(v);
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
v ^= *(const UInt32 *)p;
v =
(table + 0x000)[((v ) & 0xFF)]
^ (table + 0x100)[((v >> 8) & 0xFF)]
^ (table + 0x200)[((v >> 16) & 0xFF)]
^ (table + 0x300)[((v >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
return CRC_UINT32_SWAP(v);
}
UInt32 MY_FAST_CALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
table += 0x100;
v = CRC_UINT32_SWAP(v);
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 7) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
for (; size >= 8; size -= 8, p += 8)
{
UInt32 d;
v ^= *(const UInt32 *)p;
v =
(table + 0x400)[((v ) & 0xFF)]
^ (table + 0x500)[((v >> 8) & 0xFF)]
^ (table + 0x600)[((v >> 16) & 0xFF)]
^ (table + 0x700)[((v >> 24))];
d = *((const UInt32 *)p + 1);
v ^=
(table + 0x000)[((d ) & 0xFF)]
^ (table + 0x100)[((d >> 8) & 0xFF)]
^ (table + 0x200)[((d >> 16) & 0xFF)]
^ (table + 0x300)[((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
return CRC_UINT32_SWAP(v);
}
#endif

@ -0,0 +1,591 @@
/* 7zDec.c -- Decoding from 7z folder
2019-02-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
/* #define _7ZIP_PPMD_SUPPPORT */
#include "7z.h"
#include "7zCrc.h"
#include "Bcj2.h"
#include "Bra.h"
#include "CpuArch.h"
#include "Delta.h"
#include "LzmaDec.h"
#include "Lzma2Dec.h"
#ifdef _7ZIP_PPMD_SUPPPORT
#include "Ppmd7.h"
#endif
#define k_Copy 0
#define k_Delta 3
#define k_LZMA2 0x21
#define k_LZMA 0x30101
#define k_BCJ 0x3030103
#define k_BCJ2 0x303011B
#define k_PPC 0x3030205
#define k_IA64 0x3030401
#define k_ARM 0x3030501
#define k_ARMT 0x3030701
#define k_SPARC 0x3030805
#ifdef _7ZIP_PPMD_SUPPPORT
#define k_PPMD 0x30401
typedef struct
{
IByteIn vt;
const Byte *cur;
const Byte *end;
const Byte *begin;
UInt64 processed;
BoolInt extra;
SRes res;
const ILookInStream *inStream;
} CByteInToLook;
static Byte ReadByte(const IByteIn *pp)
{
CByteInToLook *p = CONTAINER_FROM_VTBL(pp, CByteInToLook, vt);
if (p->cur != p->end)
return *p->cur++;
if (p->res == SZ_OK)
{
size_t size = p->cur - p->begin;
p->processed += size;
p->res = ILookInStream_Skip(p->inStream, size);
size = (1 << 25);
p->res = ILookInStream_Look(p->inStream, (const void **)&p->begin, &size);
p->cur = p->begin;
p->end = p->begin + size;
if (size != 0)
return *p->cur++;;
}
p->extra = True;
return 0;
}
static SRes SzDecodePpmd(const Byte *props, unsigned propsSize, UInt64 inSize, const ILookInStream *inStream,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain)
{
CPpmd7 ppmd;
CByteInToLook s;
SRes res = SZ_OK;
s.vt.Read = ReadByte;
s.inStream = inStream;
s.begin = s.end = s.cur = NULL;
s.extra = False;
s.res = SZ_OK;
s.processed = 0;
if (propsSize != 5)
return SZ_ERROR_UNSUPPORTED;
{
unsigned order = props[0];
UInt32 memSize = GetUi32(props + 1);
if (order < PPMD7_MIN_ORDER ||
order > PPMD7_MAX_ORDER ||
memSize < PPMD7_MIN_MEM_SIZE ||
memSize > PPMD7_MAX_MEM_SIZE)
return SZ_ERROR_UNSUPPORTED;
Ppmd7_Construct(&ppmd);
if (!Ppmd7_Alloc(&ppmd, memSize, allocMain))
return SZ_ERROR_MEM;
Ppmd7_Init(&ppmd, order);
}
{
CPpmd7z_RangeDec rc;
Ppmd7z_RangeDec_CreateVTable(&rc);
rc.Stream = &s.vt;
if (!Ppmd7z_RangeDec_Init(&rc))
res = SZ_ERROR_DATA;
else if (s.extra)
res = (s.res != SZ_OK ? s.res : SZ_ERROR_DATA);
else
{
SizeT i;
for (i = 0; i < outSize; i++)
{
int sym = Ppmd7_DecodeSymbol(&ppmd, &rc.vt);
if (s.extra || sym < 0)
break;
outBuffer[i] = (Byte)sym;
}
if (i != outSize)
res = (s.res != SZ_OK ? s.res : SZ_ERROR_DATA);
else if (s.processed + (s.cur - s.begin) != inSize || !Ppmd7z_RangeDec_IsFinishedOK(&rc))
res = SZ_ERROR_DATA;
}
}
Ppmd7_Free(&ppmd, allocMain);
return res;
}
#endif
static SRes SzDecodeLzma(const Byte *props, unsigned propsSize, UInt64 inSize, ILookInStream *inStream,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain)
{
CLzmaDec state;
SRes res = SZ_OK;
LzmaDec_Construct(&state);
RINOK(LzmaDec_AllocateProbs(&state, props, propsSize, allocMain));
state.dic = outBuffer;
state.dicBufSize = outSize;
LzmaDec_Init(&state);
for (;;)
{
const void *inBuf = NULL;
size_t lookahead = (1 << 18);
if (lookahead > inSize)
lookahead = (size_t)inSize;
res = ILookInStream_Look(inStream, &inBuf, &lookahead);
if (res != SZ_OK)
break;
{
SizeT inProcessed = (SizeT)lookahead, dicPos = state.dicPos;
ELzmaStatus status;
res = LzmaDec_DecodeToDic(&state, outSize, (const Byte *)inBuf, &inProcessed, LZMA_FINISH_END, &status);
lookahead -= inProcessed;
inSize -= inProcessed;
if (res != SZ_OK)
break;
if (status == LZMA_STATUS_FINISHED_WITH_MARK)
{
if (outSize != state.dicPos || inSize != 0)
res = SZ_ERROR_DATA;
break;
}
if (outSize == state.dicPos && inSize == 0 && status == LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK)
break;
if (inProcessed == 0 && dicPos == state.dicPos)
{
res = SZ_ERROR_DATA;
break;
}
res = ILookInStream_Skip(inStream, inProcessed);
if (res != SZ_OK)
break;
}
}
LzmaDec_FreeProbs(&state, allocMain);
return res;
}
#ifndef _7Z_NO_METHOD_LZMA2
static SRes SzDecodeLzma2(const Byte *props, unsigned propsSize, UInt64 inSize, ILookInStream *inStream,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain)
{
CLzma2Dec state;
SRes res = SZ_OK;
Lzma2Dec_Construct(&state);
if (propsSize != 1)
return SZ_ERROR_DATA;
RINOK(Lzma2Dec_AllocateProbs(&state, props[0], allocMain));
state.decoder.dic = outBuffer;
state.decoder.dicBufSize = outSize;
Lzma2Dec_Init(&state);
for (;;)
{
const void *inBuf = NULL;
size_t lookahead = (1 << 18);
if (lookahead > inSize)
lookahead = (size_t)inSize;
res = ILookInStream_Look(inStream, &inBuf, &lookahead);
if (res != SZ_OK)
break;
{
SizeT inProcessed = (SizeT)lookahead, dicPos = state.decoder.dicPos;
ELzmaStatus status;
res = Lzma2Dec_DecodeToDic(&state, outSize, (const Byte *)inBuf, &inProcessed, LZMA_FINISH_END, &status);
lookahead -= inProcessed;
inSize -= inProcessed;
if (res != SZ_OK)
break;
if (status == LZMA_STATUS_FINISHED_WITH_MARK)
{
if (outSize != state.decoder.dicPos || inSize != 0)
res = SZ_ERROR_DATA;
break;
}
if (inProcessed == 0 && dicPos == state.decoder.dicPos)
{
res = SZ_ERROR_DATA;
break;
}
res = ILookInStream_Skip(inStream, inProcessed);
if (res != SZ_OK)
break;
}
}
Lzma2Dec_FreeProbs(&state, allocMain);
return res;
}
#endif
static SRes SzDecodeCopy(UInt64 inSize, ILookInStream *inStream, Byte *outBuffer)
{
while (inSize > 0)
{
const void *inBuf;
size_t curSize = (1 << 18);
if (curSize > inSize)
curSize = (size_t)inSize;
RINOK(ILookInStream_Look(inStream, &inBuf, &curSize));
if (curSize == 0)
return SZ_ERROR_INPUT_EOF;
memcpy(outBuffer, inBuf, curSize);
outBuffer += curSize;
inSize -= curSize;
RINOK(ILookInStream_Skip(inStream, curSize));
}
return SZ_OK;
}
static BoolInt IS_MAIN_METHOD(UInt32 m)
{
switch (m)
{
case k_Copy:
case k_LZMA:
#ifndef _7Z_NO_METHOD_LZMA2
case k_LZMA2:
#endif
#ifdef _7ZIP_PPMD_SUPPPORT
case k_PPMD:
#endif
return True;
}
return False;
}
static BoolInt IS_SUPPORTED_CODER(const CSzCoderInfo *c)
{
return
c->NumStreams == 1
/* && c->MethodID <= (UInt32)0xFFFFFFFF */
&& IS_MAIN_METHOD((UInt32)c->MethodID);
}
#define IS_BCJ2(c) ((c)->MethodID == k_BCJ2 && (c)->NumStreams == 4)
static SRes CheckSupportedFolder(const CSzFolder *f)
{
if (f->NumCoders < 1 || f->NumCoders > 4)
return SZ_ERROR_UNSUPPORTED;
if (!IS_SUPPORTED_CODER(&f->Coders[0]))
return SZ_ERROR_UNSUPPORTED;
if (f->NumCoders == 1)
{
if (f->NumPackStreams != 1 || f->PackStreams[0] != 0 || f->NumBonds != 0)
return SZ_ERROR_UNSUPPORTED;
return SZ_OK;
}
#ifndef _7Z_NO_METHODS_FILTERS
if (f->NumCoders == 2)
{
const CSzCoderInfo *c = &f->Coders[1];
if (
/* c->MethodID > (UInt32)0xFFFFFFFF || */
c->NumStreams != 1
|| f->NumPackStreams != 1
|| f->PackStreams[0] != 0
|| f->NumBonds != 1
|| f->Bonds[0].InIndex != 1
|| f->Bonds[0].OutIndex != 0)
return SZ_ERROR_UNSUPPORTED;
switch ((UInt32)c->MethodID)
{
case k_Delta:
case k_BCJ:
case k_PPC:
case k_IA64:
case k_SPARC:
case k_ARM:
case k_ARMT:
break;
default:
return SZ_ERROR_UNSUPPORTED;
}
return SZ_OK;
}
#endif
if (f->NumCoders == 4)
{
if (!IS_SUPPORTED_CODER(&f->Coders[1])
|| !IS_SUPPORTED_CODER(&f->Coders[2])
|| !IS_BCJ2(&f->Coders[3]))
return SZ_ERROR_UNSUPPORTED;
if (f->NumPackStreams != 4
|| f->PackStreams[0] != 2
|| f->PackStreams[1] != 6
|| f->PackStreams[2] != 1
|| f->PackStreams[3] != 0
|| f->NumBonds != 3
|| f->Bonds[0].InIndex != 5 || f->Bonds[0].OutIndex != 0
|| f->Bonds[1].InIndex != 4 || f->Bonds[1].OutIndex != 1
|| f->Bonds[2].InIndex != 3 || f->Bonds[2].OutIndex != 2)
return SZ_ERROR_UNSUPPORTED;
return SZ_OK;
}
return SZ_ERROR_UNSUPPORTED;
}
#define CASE_BRA_CONV(isa) case k_ ## isa: isa ## _Convert(outBuffer, outSize, 0, 0); break;
static SRes SzFolder_Decode2(const CSzFolder *folder,
const Byte *propsData,
const UInt64 *unpackSizes,
const UInt64 *packPositions,
ILookInStream *inStream, UInt64 startPos,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain,
Byte *tempBuf[])
{
UInt32 ci;
SizeT tempSizes[3] = { 0, 0, 0};
SizeT tempSize3 = 0;
Byte *tempBuf3 = 0;
RINOK(CheckSupportedFolder(folder));
for (ci = 0; ci < folder->NumCoders; ci++)
{
const CSzCoderInfo *coder = &folder->Coders[ci];
if (IS_MAIN_METHOD((UInt32)coder->MethodID))
{
UInt32 si = 0;
UInt64 offset;
UInt64 inSize;
Byte *outBufCur = outBuffer;
SizeT outSizeCur = outSize;
if (folder->NumCoders == 4)
{
UInt32 indices[] = { 3, 2, 0 };
UInt64 unpackSize = unpackSizes[ci];
si = indices[ci];
if (ci < 2)
{
Byte *temp;
outSizeCur = (SizeT)unpackSize;
if (outSizeCur != unpackSize)
return SZ_ERROR_MEM;
temp = (Byte *)ISzAlloc_Alloc(allocMain, outSizeCur);
if (!temp && outSizeCur != 0)
return SZ_ERROR_MEM;
outBufCur = tempBuf[1 - ci] = temp;
tempSizes[1 - ci] = outSizeCur;
}
else if (ci == 2)
{
if (unpackSize > outSize) /* check it */
return SZ_ERROR_PARAM;
tempBuf3 = outBufCur = outBuffer + (outSize - (size_t)unpackSize);
tempSize3 = outSizeCur = (SizeT)unpackSize;
}
else
return SZ_ERROR_UNSUPPORTED;
}
offset = packPositions[si];
inSize = packPositions[(size_t)si + 1] - offset;
RINOK(LookInStream_SeekTo(inStream, startPos + offset));
if (coder->MethodID == k_Copy)
{
if (inSize != outSizeCur) /* check it */
return SZ_ERROR_DATA;
RINOK(SzDecodeCopy(inSize, inStream, outBufCur));
}
else if (coder->MethodID == k_LZMA)
{
RINOK(SzDecodeLzma(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain));
}
#ifndef _7Z_NO_METHOD_LZMA2
else if (coder->MethodID == k_LZMA2)
{
RINOK(SzDecodeLzma2(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain));
}
#endif
#ifdef _7ZIP_PPMD_SUPPPORT
else if (coder->MethodID == k_PPMD)
{
RINOK(SzDecodePpmd(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain));
}
#endif
else
return SZ_ERROR_UNSUPPORTED;
}
else if (coder->MethodID == k_BCJ2)
{
UInt64 offset = packPositions[1];
UInt64 s3Size = packPositions[2] - offset;
if (ci != 3)
return SZ_ERROR_UNSUPPORTED;
tempSizes[2] = (SizeT)s3Size;
if (tempSizes[2] != s3Size)
return SZ_ERROR_MEM;
tempBuf[2] = (Byte *)ISzAlloc_Alloc(allocMain, tempSizes[2]);
if (!tempBuf[2] && tempSizes[2] != 0)
return SZ_ERROR_MEM;
RINOK(LookInStream_SeekTo(inStream, startPos + offset));
RINOK(SzDecodeCopy(s3Size, inStream, tempBuf[2]));
if ((tempSizes[0] & 3) != 0 ||
(tempSizes[1] & 3) != 0 ||
tempSize3 + tempSizes[0] + tempSizes[1] != outSize)
return SZ_ERROR_DATA;
{
CBcj2Dec p;
p.bufs[0] = tempBuf3; p.lims[0] = tempBuf3 + tempSize3;
p.bufs[1] = tempBuf[0]; p.lims[1] = tempBuf[0] + tempSizes[0];
p.bufs[2] = tempBuf[1]; p.lims[2] = tempBuf[1] + tempSizes[1];
p.bufs[3] = tempBuf[2]; p.lims[3] = tempBuf[2] + tempSizes[2];
p.dest = outBuffer;
p.destLim = outBuffer + outSize;
Bcj2Dec_Init(&p);
RINOK(Bcj2Dec_Decode(&p));
{
unsigned i;
for (i = 0; i < 4; i++)
if (p.bufs[i] != p.lims[i])
return SZ_ERROR_DATA;
if (!Bcj2Dec_IsFinished(&p))
return SZ_ERROR_DATA;
if (p.dest != p.destLim
|| p.state != BCJ2_STREAM_MAIN)
return SZ_ERROR_DATA;
}
}
}
#ifndef _7Z_NO_METHODS_FILTERS
else if (ci == 1)
{
if (coder->MethodID == k_Delta)
{
if (coder->PropsSize != 1)
return SZ_ERROR_UNSUPPORTED;
{
Byte state[DELTA_STATE_SIZE];
Delta_Init(state);
Delta_Decode(state, (unsigned)(propsData[coder->PropsOffset]) + 1, outBuffer, outSize);
}
}
else
{
if (coder->PropsSize != 0)
return SZ_ERROR_UNSUPPORTED;
switch (coder->MethodID)
{
case k_BCJ:
{
UInt32 state;
x86_Convert_Init(state);
x86_Convert(outBuffer, outSize, 0, &state, 0);
break;
}
CASE_BRA_CONV(PPC)
CASE_BRA_CONV(IA64)
CASE_BRA_CONV(SPARC)
CASE_BRA_CONV(ARM)
CASE_BRA_CONV(ARMT)
default:
return SZ_ERROR_UNSUPPORTED;
}
}
}
#endif
else
return SZ_ERROR_UNSUPPORTED;
}
return SZ_OK;
}
SRes SzAr_DecodeFolder(const CSzAr *p, UInt32 folderIndex,
ILookInStream *inStream, UInt64 startPos,
Byte *outBuffer, size_t outSize,
ISzAllocPtr allocMain)
{
SRes res;
CSzFolder folder;
CSzData sd;
const Byte *data = p->CodersData + p->FoCodersOffsets[folderIndex];
sd.Data = data;
sd.Size = p->FoCodersOffsets[(size_t)folderIndex + 1] - p->FoCodersOffsets[folderIndex];
res = SzGetNextFolderItem(&folder, &sd);
if (res != SZ_OK)
return res;
if (sd.Size != 0
|| folder.UnpackStream != p->FoToMainUnpackSizeIndex[folderIndex]
|| outSize != SzAr_GetFolderUnpackSize(p, folderIndex))
return SZ_ERROR_FAIL;
{
unsigned i;
Byte *tempBuf[3] = { 0, 0, 0};
res = SzFolder_Decode2(&folder, data,
&p->CoderUnpackSizes[p->FoToCoderUnpackSizes[folderIndex]],
p->PackPositions + p->FoStartPackStreamIndex[folderIndex],
inStream, startPos,
outBuffer, (SizeT)outSize, allocMain, tempBuf);
for (i = 0; i < 3; i++)
ISzAlloc_Free(allocMain, tempBuf[i]);
if (res == SZ_OK)
if (SzBitWithVals_Check(&p->FolderCRCs, folderIndex))
if (CrcCalc(outBuffer, outSize) != p->FolderCRCs.Vals[folderIndex])
res = SZ_ERROR_CRC;
return res;
}
}

@ -0,0 +1,286 @@
/* 7zFile.c -- File IO
2017-04-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "7zFile.h"
#ifndef USE_WINDOWS_FILE
#ifndef UNDER_CE
#include <errno.h>
#endif
#else
/*
ReadFile and WriteFile functions in Windows have BUG:
If you Read or Write 64MB or more (probably min_failure_size = 64MB - 32KB + 1)
from/to Network file, it returns ERROR_NO_SYSTEM_RESOURCES
(Insufficient system resources exist to complete the requested service).
Probably in some version of Windows there are problems with other sizes:
for 32 MB (maybe also for 16 MB).
And message can be "Network connection was lost"
*/
#define kChunkSizeMax (1 << 22)
#endif
void File_Construct(CSzFile *p)
{
#ifdef USE_WINDOWS_FILE
p->handle = INVALID_HANDLE_VALUE;
#else
p->file = NULL;
#endif
}
#if !defined(UNDER_CE) || !defined(USE_WINDOWS_FILE)
static WRes File_Open(CSzFile *p, const char *name, int writeMode)
{
#ifdef USE_WINDOWS_FILE
p->handle = CreateFileA(name,
writeMode ? GENERIC_WRITE : GENERIC_READ,
FILE_SHARE_READ, NULL,
writeMode ? CREATE_ALWAYS : OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);
return (p->handle != INVALID_HANDLE_VALUE) ? 0 : GetLastError();
#else
p->file = fopen(name, writeMode ? "wb+" : "rb");
return (p->file != 0) ? 0 :
#ifdef UNDER_CE
2; /* ENOENT */
#else
errno;
#endif
#endif
}
WRes InFile_Open(CSzFile *p, const char *name) { return File_Open(p, name, 0); }
WRes OutFile_Open(CSzFile *p, const char *name) { return File_Open(p, name, 1); }
#endif
#ifdef USE_WINDOWS_FILE
static WRes File_OpenW(CSzFile *p, const WCHAR *name, int writeMode)
{
p->handle = CreateFileW(name,
writeMode ? GENERIC_WRITE : GENERIC_READ,
FILE_SHARE_READ, NULL,
writeMode ? CREATE_ALWAYS : OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);
return (p->handle != INVALID_HANDLE_VALUE) ? 0 : GetLastError();
}
WRes InFile_OpenW(CSzFile *p, const WCHAR *name) { return File_OpenW(p, name, 0); }
WRes OutFile_OpenW(CSzFile *p, const WCHAR *name) { return File_OpenW(p, name, 1); }
#endif
WRes File_Close(CSzFile *p)
{
#ifdef USE_WINDOWS_FILE
if (p->handle != INVALID_HANDLE_VALUE)
{
if (!CloseHandle(p->handle))
return GetLastError();
p->handle = INVALID_HANDLE_VALUE;
}
#else
if (p->file != NULL)
{
int res = fclose(p->file);
if (res != 0)
return res;
p->file = NULL;
}
#endif
return 0;
}
WRes File_Read(CSzFile *p, void *data, size_t *size)
{
size_t originalSize = *size;
if (originalSize == 0)
return 0;
#ifdef USE_WINDOWS_FILE
*size = 0;
do
{
DWORD curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : (DWORD)originalSize;
DWORD processed = 0;
BOOL res = ReadFile(p->handle, data, curSize, &processed, NULL);
data = (void *)((Byte *)data + processed);
originalSize -= processed;
*size += processed;
if (!res)
return GetLastError();
if (processed == 0)
break;
}
while (originalSize > 0);
return 0;
#else
*size = fread(data, 1, originalSize, p->file);
if (*size == originalSize)
return 0;
return ferror(p->file);
#endif
}
WRes File_Write(CSzFile *p, const void *data, size_t *size)
{
size_t originalSize = *size;
if (originalSize == 0)
return 0;
#ifdef USE_WINDOWS_FILE
*size = 0;
do
{
DWORD curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : (DWORD)originalSize;
DWORD processed = 0;
BOOL res = WriteFile(p->handle, data, curSize, &processed, NULL);
data = (void *)((Byte *)data + processed);
originalSize -= processed;
*size += processed;
if (!res)
return GetLastError();
if (processed == 0)
break;
}
while (originalSize > 0);
return 0;
#else
*size = fwrite(data, 1, originalSize, p->file);
if (*size == originalSize)
return 0;
return ferror(p->file);
#endif
}
WRes File_Seek(CSzFile *p, Int64 *pos, ESzSeek origin)
{
#ifdef USE_WINDOWS_FILE
LARGE_INTEGER value;
DWORD moveMethod;
value.LowPart = (DWORD)*pos;
value.HighPart = (LONG)((UInt64)*pos >> 16 >> 16); /* for case when UInt64 is 32-bit only */
switch (origin)
{
case SZ_SEEK_SET: moveMethod = FILE_BEGIN; break;
case SZ_SEEK_CUR: moveMethod = FILE_CURRENT; break;
case SZ_SEEK_END: moveMethod = FILE_END; break;
default: return ERROR_INVALID_PARAMETER;
}
value.LowPart = SetFilePointer(p->handle, value.LowPart, &value.HighPart, moveMethod);
if (value.LowPart == 0xFFFFFFFF)
{
WRes res = GetLastError();
if (res != NO_ERROR)
return res;
}
*pos = ((Int64)value.HighPart << 32) | value.LowPart;
return 0;
#else
int moveMethod;
int res;
switch (origin)
{
case SZ_SEEK_SET: moveMethod = SEEK_SET; break;
case SZ_SEEK_CUR: moveMethod = SEEK_CUR; break;
case SZ_SEEK_END: moveMethod = SEEK_END; break;
default: return 1;
}
res = fseek(p->file, (long)*pos, moveMethod);
*pos = ftell(p->file);
return res;
#endif
}
WRes File_GetLength(CSzFile *p, UInt64 *length)
{
#ifdef USE_WINDOWS_FILE
DWORD sizeHigh;
DWORD sizeLow = GetFileSize(p->handle, &sizeHigh);
if (sizeLow == 0xFFFFFFFF)
{
DWORD res = GetLastError();
if (res != NO_ERROR)
return res;
}
*length = (((UInt64)sizeHigh) << 32) + sizeLow;
return 0;
#else
long pos = ftell(p->file);
int res = fseek(p->file, 0, SEEK_END);
*length = ftell(p->file);
fseek(p->file, pos, SEEK_SET);
return res;
#endif
}
/* ---------- FileSeqInStream ---------- */
static SRes FileSeqInStream_Read(const ISeqInStream *pp, void *buf, size_t *size)
{
CFileSeqInStream *p = CONTAINER_FROM_VTBL(pp, CFileSeqInStream, vt);
return File_Read(&p->file, buf, size) == 0 ? SZ_OK : SZ_ERROR_READ;
}
void FileSeqInStream_CreateVTable(CFileSeqInStream *p)
{
p->vt.Read = FileSeqInStream_Read;
}
/* ---------- FileInStream ---------- */
static SRes FileInStream_Read(const ISeekInStream *pp, void *buf, size_t *size)
{
CFileInStream *p = CONTAINER_FROM_VTBL(pp, CFileInStream, vt);
return (File_Read(&p->file, buf, size) == 0) ? SZ_OK : SZ_ERROR_READ;
}
static SRes FileInStream_Seek(const ISeekInStream *pp, Int64 *pos, ESzSeek origin)
{
CFileInStream *p = CONTAINER_FROM_VTBL(pp, CFileInStream, vt);
return File_Seek(&p->file, pos, origin);
}
void FileInStream_CreateVTable(CFileInStream *p)
{
p->vt.Read = FileInStream_Read;
p->vt.Seek = FileInStream_Seek;
}
/* ---------- FileOutStream ---------- */
static size_t FileOutStream_Write(const ISeqOutStream *pp, const void *data, size_t size)
{
CFileOutStream *p = CONTAINER_FROM_VTBL(pp, CFileOutStream, vt);
File_Write(&p->file, data, &size);
return size;
}
void FileOutStream_CreateVTable(CFileOutStream *p)
{
p->vt.Write = FileOutStream_Write;
}

@ -0,0 +1,83 @@
/* 7zFile.h -- File IO
2017-04-03 : Igor Pavlov : Public domain */
#ifndef __7Z_FILE_H
#define __7Z_FILE_H
#ifdef _WIN32
#define USE_WINDOWS_FILE
#endif
#ifdef USE_WINDOWS_FILE
#include <windows.h>
#else
#include <stdio.h>
#endif
#include "7zTypes.h"
EXTERN_C_BEGIN
/* ---------- File ---------- */
typedef struct
{
#ifdef USE_WINDOWS_FILE
HANDLE handle;
#else
FILE *file;
#endif
} CSzFile;
void File_Construct(CSzFile *p);
#if !defined(UNDER_CE) || !defined(USE_WINDOWS_FILE)
WRes InFile_Open(CSzFile *p, const char *name);
WRes OutFile_Open(CSzFile *p, const char *name);
#endif
#ifdef USE_WINDOWS_FILE
WRes InFile_OpenW(CSzFile *p, const WCHAR *name);
WRes OutFile_OpenW(CSzFile *p, const WCHAR *name);
#endif
WRes File_Close(CSzFile *p);
/* reads max(*size, remain file's size) bytes */
WRes File_Read(CSzFile *p, void *data, size_t *size);
/* writes *size bytes */
WRes File_Write(CSzFile *p, const void *data, size_t *size);
WRes File_Seek(CSzFile *p, Int64 *pos, ESzSeek origin);
WRes File_GetLength(CSzFile *p, UInt64 *length);
/* ---------- FileInStream ---------- */
typedef struct
{
ISeqInStream vt;
CSzFile file;
} CFileSeqInStream;
void FileSeqInStream_CreateVTable(CFileSeqInStream *p);
typedef struct
{
ISeekInStream vt;
CSzFile file;
} CFileInStream;
void FileInStream_CreateVTable(CFileInStream *p);
typedef struct
{
ISeqOutStream vt;
CSzFile file;
} CFileOutStream;
void FileOutStream_CreateVTable(CFileOutStream *p);
EXTERN_C_END
#endif

@ -0,0 +1,176 @@
/* 7zStream.c -- 7z Stream functions
2017-04-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
#include "7zTypes.h"
SRes SeqInStream_Read2(const ISeqInStream *stream, void *buf, size_t size, SRes errorType)
{
while (size != 0)
{
size_t processed = size;
RINOK(ISeqInStream_Read(stream, buf, &processed));
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
size -= processed;
}
return SZ_OK;
}
SRes SeqInStream_Read(const ISeqInStream *stream, void *buf, size_t size)
{
return SeqInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
}
SRes SeqInStream_ReadByte(const ISeqInStream *stream, Byte *buf)
{
size_t processed = 1;
RINOK(ISeqInStream_Read(stream, buf, &processed));
return (processed == 1) ? SZ_OK : SZ_ERROR_INPUT_EOF;
}
SRes LookInStream_SeekTo(const ILookInStream *stream, UInt64 offset)
{
Int64 t = offset;
return ILookInStream_Seek(stream, &t, SZ_SEEK_SET);
}
SRes LookInStream_LookRead(const ILookInStream *stream, void *buf, size_t *size)
{
const void *lookBuf;
if (*size == 0)
return SZ_OK;
RINOK(ILookInStream_Look(stream, &lookBuf, size));
memcpy(buf, lookBuf, *size);
return ILookInStream_Skip(stream, *size);
}
SRes LookInStream_Read2(const ILookInStream *stream, void *buf, size_t size, SRes errorType)
{
while (size != 0)
{
size_t processed = size;
RINOK(ILookInStream_Read(stream, buf, &processed));
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
size -= processed;
}
return SZ_OK;
}
SRes LookInStream_Read(const ILookInStream *stream, void *buf, size_t size)
{
return LookInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
}
#define GET_LookToRead2 CLookToRead2 *p = CONTAINER_FROM_VTBL(pp, CLookToRead2, vt);
static SRes LookToRead2_Look_Lookahead(const ILookInStream *pp, const void **buf, size_t *size)
{
SRes res = SZ_OK;
GET_LookToRead2
size_t size2 = p->size - p->pos;
if (size2 == 0 && *size != 0)
{
p->pos = 0;
p->size = 0;
size2 = p->bufSize;
res = ISeekInStream_Read(p->realStream, p->buf, &size2);
p->size = size2;
}
if (*size > size2)
*size = size2;
*buf = p->buf + p->pos;
return res;
}
static SRes LookToRead2_Look_Exact(const ILookInStream *pp, const void **buf, size_t *size)
{
SRes res = SZ_OK;
GET_LookToRead2
size_t size2 = p->size - p->pos;
if (size2 == 0 && *size != 0)
{
p->pos = 0;
p->size = 0;
if (*size > p->bufSize)
*size = p->bufSize;
res = ISeekInStream_Read(p->realStream, p->buf, size);
size2 = p->size = *size;
}
if (*size > size2)
*size = size2;
*buf = p->buf + p->pos;
return res;
}
static SRes LookToRead2_Skip(const ILookInStream *pp, size_t offset)
{
GET_LookToRead2
p->pos += offset;
return SZ_OK;
}
static SRes LookToRead2_Read(const ILookInStream *pp, void *buf, size_t *size)
{
GET_LookToRead2
size_t rem = p->size - p->pos;
if (rem == 0)
return ISeekInStream_Read(p->realStream, buf, size);
if (rem > *size)
rem = *size;
memcpy(buf, p->buf + p->pos, rem);
p->pos += rem;
*size = rem;
return SZ_OK;
}
static SRes LookToRead2_Seek(const ILookInStream *pp, Int64 *pos, ESzSeek origin)
{
GET_LookToRead2
p->pos = p->size = 0;
return ISeekInStream_Seek(p->realStream, pos, origin);
}
void LookToRead2_CreateVTable(CLookToRead2 *p, int lookahead)
{
p->vt.Look = lookahead ?
LookToRead2_Look_Lookahead :
LookToRead2_Look_Exact;
p->vt.Skip = LookToRead2_Skip;
p->vt.Read = LookToRead2_Read;
p->vt.Seek = LookToRead2_Seek;
}
static SRes SecToLook_Read(const ISeqInStream *pp, void *buf, size_t *size)
{
CSecToLook *p = CONTAINER_FROM_VTBL(pp, CSecToLook, vt);
return LookInStream_LookRead(p->realStream, buf, size);
}
void SecToLook_CreateVTable(CSecToLook *p)
{
p->vt.Read = SecToLook_Read;
}
static SRes SecToRead_Read(const ISeqInStream *pp, void *buf, size_t *size)
{
CSecToRead *p = CONTAINER_FROM_VTBL(pp, CSecToRead, vt);
return ILookInStream_Read(p->realStream, buf, size);
}
void SecToRead_CreateVTable(CSecToRead *p)
{
p->vt.Read = SecToRead_Read;
}

@ -0,0 +1,27 @@
#define MY_VER_MAJOR 19
#define MY_VER_MINOR 00
#define MY_VER_BUILD 0
#define MY_VERSION_NUMBERS "19.00"
#define MY_VERSION MY_VERSION_NUMBERS
#ifdef MY_CPU_NAME
#define MY_VERSION_CPU MY_VERSION " (" MY_CPU_NAME ")"
#else
#define MY_VERSION_CPU MY_VERSION
#endif
#define MY_DATE "2019-02-21"
#undef MY_COPYRIGHT
#undef MY_VERSION_COPYRIGHT_DATE
#define MY_AUTHOR_NAME "Igor Pavlov"
#define MY_COPYRIGHT_PD "Igor Pavlov : Public domain"
#define MY_COPYRIGHT_CR "Copyright (c) 1999-2018 Igor Pavlov"
#ifdef USE_COPYRIGHT_CR
#define MY_COPYRIGHT MY_COPYRIGHT_CR
#else
#define MY_COPYRIGHT MY_COPYRIGHT_PD
#endif
#define MY_COPYRIGHT_DATE MY_COPYRIGHT " : " MY_DATE
#define MY_VERSION_COPYRIGHT_DATE MY_VERSION_CPU " : " MY_COPYRIGHT " : " MY_DATE

@ -0,0 +1,55 @@
#define MY_VS_FFI_FILEFLAGSMASK 0x0000003FL
#define MY_VOS_NT_WINDOWS32 0x00040004L
#define MY_VOS_CE_WINDOWS32 0x00050004L
#define MY_VFT_APP 0x00000001L
#define MY_VFT_DLL 0x00000002L
// #include <WinVer.h>
#ifndef MY_VERSION
#include "7zVersion.h"
#endif
#define MY_VER MY_VER_MAJOR,MY_VER_MINOR,MY_VER_BUILD,0
#ifdef DEBUG
#define DBG_FL VS_FF_DEBUG
#else
#define DBG_FL 0
#endif
#define MY_VERSION_INFO(fileType, descr, intName, origName) \
LANGUAGE 9, 1 \
1 VERSIONINFO \
FILEVERSION MY_VER \
PRODUCTVERSION MY_VER \
FILEFLAGSMASK MY_VS_FFI_FILEFLAGSMASK \
FILEFLAGS DBG_FL \
FILEOS MY_VOS_NT_WINDOWS32 \
FILETYPE fileType \
FILESUBTYPE 0x0L \
BEGIN \
BLOCK "StringFileInfo" \
BEGIN \
BLOCK "040904b0" \
BEGIN \
VALUE "CompanyName", "Igor Pavlov" \
VALUE "FileDescription", descr \
VALUE "FileVersion", MY_VERSION \
VALUE "InternalName", intName \
VALUE "LegalCopyright", MY_COPYRIGHT \
VALUE "OriginalFilename", origName \
VALUE "ProductName", "7-Zip" \
VALUE "ProductVersion", MY_VERSION \
END \
END \
BLOCK "VarFileInfo" \
BEGIN \
VALUE "Translation", 0x409, 1200 \
END \
END
#define MY_VERSION_INFO_APP(descr, intName) MY_VERSION_INFO(MY_VFT_APP, descr, intName, intName ".exe")
#define MY_VERSION_INFO_DLL(descr, intName) MY_VERSION_INFO(MY_VFT_DLL, descr, intName, intName ".dll")

@ -0,0 +1,306 @@
/* Aes.c -- AES encryption / decryption
2017-01-24 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Aes.h"
#include "CpuArch.h"
static UInt32 T[256 * 4];
static const Byte Sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
void MY_FAST_CALL AesCbc_Encode(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Decode(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCtr_Code(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Encode_Intel(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Decode_Intel(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCtr_Code_Intel(UInt32 *ivAes, Byte *data, size_t numBlocks);
AES_CODE_FUNC g_AesCbc_Encode;
AES_CODE_FUNC g_AesCbc_Decode;
AES_CODE_FUNC g_AesCtr_Code;
static UInt32 D[256 * 4];
static Byte InvS[256];
static const Byte Rcon[11] = { 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
#define xtime(x) ((((x) << 1) ^ (((x) & 0x80) != 0 ? 0x1B : 0)) & 0xFF)
#define Ui32(a0, a1, a2, a3) ((UInt32)(a0) | ((UInt32)(a1) << 8) | ((UInt32)(a2) << 16) | ((UInt32)(a3) << 24))
#define gb0(x) ( (x) & 0xFF)
#define gb1(x) (((x) >> ( 8)) & 0xFF)
#define gb2(x) (((x) >> (16)) & 0xFF)
#define gb3(x) (((x) >> (24)))
#define gb(n, x) gb ## n(x)
#define TT(x) (T + (x << 8))
#define DD(x) (D + (x << 8))
void AesGenTables(void)
{
unsigned i;
for (i = 0; i < 256; i++)
InvS[Sbox[i]] = (Byte)i;
for (i = 0; i < 256; i++)
{
{
UInt32 a1 = Sbox[i];
UInt32 a2 = xtime(a1);
UInt32 a3 = a2 ^ a1;
TT(0)[i] = Ui32(a2, a1, a1, a3);
TT(1)[i] = Ui32(a3, a2, a1, a1);
TT(2)[i] = Ui32(a1, a3, a2, a1);
TT(3)[i] = Ui32(a1, a1, a3, a2);
}
{
UInt32 a1 = InvS[i];
UInt32 a2 = xtime(a1);
UInt32 a4 = xtime(a2);
UInt32 a8 = xtime(a4);
UInt32 a9 = a8 ^ a1;
UInt32 aB = a8 ^ a2 ^ a1;
UInt32 aD = a8 ^ a4 ^ a1;
UInt32 aE = a8 ^ a4 ^ a2;
DD(0)[i] = Ui32(aE, a9, aD, aB);
DD(1)[i] = Ui32(aB, aE, a9, aD);
DD(2)[i] = Ui32(aD, aB, aE, a9);
DD(3)[i] = Ui32(a9, aD, aB, aE);
}
}
g_AesCbc_Encode = AesCbc_Encode;
g_AesCbc_Decode = AesCbc_Decode;
g_AesCtr_Code = AesCtr_Code;
#ifdef MY_CPU_X86_OR_AMD64
if (CPU_Is_Aes_Supported())
{
g_AesCbc_Encode = AesCbc_Encode_Intel;
g_AesCbc_Decode = AesCbc_Decode_Intel;
g_AesCtr_Code = AesCtr_Code_Intel;
}
#endif
}
#define HT(i, x, s) TT(x)[gb(x, s[(i + x) & 3])]
#define HT4(m, i, s, p) m[i] = \
HT(i, 0, s) ^ \
HT(i, 1, s) ^ \
HT(i, 2, s) ^ \
HT(i, 3, s) ^ w[p + i]
#define HT16(m, s, p) \
HT4(m, 0, s, p); \
HT4(m, 1, s, p); \
HT4(m, 2, s, p); \
HT4(m, 3, s, p); \
#define FT(i, x) Sbox[gb(x, m[(i + x) & 3])]
#define FT4(i) dest[i] = Ui32(FT(i, 0), FT(i, 1), FT(i, 2), FT(i, 3)) ^ w[i];
#define HD(i, x, s) DD(x)[gb(x, s[(i - x) & 3])]
#define HD4(m, i, s, p) m[i] = \
HD(i, 0, s) ^ \
HD(i, 1, s) ^ \
HD(i, 2, s) ^ \
HD(i, 3, s) ^ w[p + i];
#define HD16(m, s, p) \
HD4(m, 0, s, p); \
HD4(m, 1, s, p); \
HD4(m, 2, s, p); \
HD4(m, 3, s, p); \
#define FD(i, x) InvS[gb(x, m[(i - x) & 3])]
#define FD4(i) dest[i] = Ui32(FD(i, 0), FD(i, 1), FD(i, 2), FD(i, 3)) ^ w[i];
void MY_FAST_CALL Aes_SetKey_Enc(UInt32 *w, const Byte *key, unsigned keySize)
{
unsigned i, wSize;
wSize = keySize + 28;
keySize /= 4;
w[0] = ((UInt32)keySize / 2) + 3;
w += 4;
for (i = 0; i < keySize; i++, key += 4)
w[i] = GetUi32(key);
for (; i < wSize; i++)
{
UInt32 t = w[(size_t)i - 1];
unsigned rem = i % keySize;
if (rem == 0)
t = Ui32(Sbox[gb1(t)] ^ Rcon[i / keySize], Sbox[gb2(t)], Sbox[gb3(t)], Sbox[gb0(t)]);
else if (keySize > 6 && rem == 4)
t = Ui32(Sbox[gb0(t)], Sbox[gb1(t)], Sbox[gb2(t)], Sbox[gb3(t)]);
w[i] = w[i - keySize] ^ t;
}
}
void MY_FAST_CALL Aes_SetKey_Dec(UInt32 *w, const Byte *key, unsigned keySize)
{
unsigned i, num;
Aes_SetKey_Enc(w, key, keySize);
num = keySize + 20;
w += 8;
for (i = 0; i < num; i++)
{
UInt32 r = w[i];
w[i] =
DD(0)[Sbox[gb0(r)]] ^
DD(1)[Sbox[gb1(r)]] ^
DD(2)[Sbox[gb2(r)]] ^
DD(3)[Sbox[gb3(r)]];
}
}
/* Aes_Encode and Aes_Decode functions work with little-endian words.
src and dest are pointers to 4 UInt32 words.
src and dest can point to same block */
static void Aes_Encode(const UInt32 *w, UInt32 *dest, const UInt32 *src)
{
UInt32 s[4];
UInt32 m[4];
UInt32 numRounds2 = w[0];
w += 4;
s[0] = src[0] ^ w[0];
s[1] = src[1] ^ w[1];
s[2] = src[2] ^ w[2];
s[3] = src[3] ^ w[3];
w += 4;
for (;;)
{
HT16(m, s, 0);
if (--numRounds2 == 0)
break;
HT16(s, m, 4);
w += 8;
}
w += 4;
FT4(0); FT4(1); FT4(2); FT4(3);
}
static void Aes_Decode(const UInt32 *w, UInt32 *dest, const UInt32 *src)
{
UInt32 s[4];
UInt32 m[4];
UInt32 numRounds2 = w[0];
w += 4 + numRounds2 * 8;
s[0] = src[0] ^ w[0];
s[1] = src[1] ^ w[1];
s[2] = src[2] ^ w[2];
s[3] = src[3] ^ w[3];
for (;;)
{
w -= 8;
HD16(m, s, 4);
if (--numRounds2 == 0)
break;
HD16(s, m, 0);
}
FD4(0); FD4(1); FD4(2); FD4(3);
}
void AesCbc_Init(UInt32 *p, const Byte *iv)
{
unsigned i;
for (i = 0; i < 4; i++)
p[i] = GetUi32(iv + i * 4);
}
void MY_FAST_CALL AesCbc_Encode(UInt32 *p, Byte *data, size_t numBlocks)
{
for (; numBlocks != 0; numBlocks--, data += AES_BLOCK_SIZE)
{
p[0] ^= GetUi32(data);
p[1] ^= GetUi32(data + 4);
p[2] ^= GetUi32(data + 8);
p[3] ^= GetUi32(data + 12);
Aes_Encode(p + 4, p, p);
SetUi32(data, p[0]);
SetUi32(data + 4, p[1]);
SetUi32(data + 8, p[2]);
SetUi32(data + 12, p[3]);
}
}
void MY_FAST_CALL AesCbc_Decode(UInt32 *p, Byte *data, size_t numBlocks)
{
UInt32 in[4], out[4];
for (; numBlocks != 0; numBlocks--, data += AES_BLOCK_SIZE)
{
in[0] = GetUi32(data);
in[1] = GetUi32(data + 4);
in[2] = GetUi32(data + 8);
in[3] = GetUi32(data + 12);
Aes_Decode(p + 4, out, in);
SetUi32(data, p[0] ^ out[0]);
SetUi32(data + 4, p[1] ^ out[1]);
SetUi32(data + 8, p[2] ^ out[2]);
SetUi32(data + 12, p[3] ^ out[3]);
p[0] = in[0];
p[1] = in[1];
p[2] = in[2];
p[3] = in[3];
}
}
void MY_FAST_CALL AesCtr_Code(UInt32 *p, Byte *data, size_t numBlocks)
{
for (; numBlocks != 0; numBlocks--)
{
UInt32 temp[4];
unsigned i;
if (++p[0] == 0)
p[1]++;
Aes_Encode(p + 4, temp, p);
for (i = 0; i < 4; i++, data += 4)
{
UInt32 t = temp[i];
#ifdef MY_CPU_LE_UNALIGN
*((UInt32 *)data) ^= t;
#else
data[0] ^= (t & 0xFF);
data[1] ^= ((t >> 8) & 0xFF);
data[2] ^= ((t >> 16) & 0xFF);
data[3] ^= ((t >> 24));
#endif
}
}
}

@ -0,0 +1,38 @@
/* Aes.h -- AES encryption / decryption
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __AES_H
#define __AES_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define AES_BLOCK_SIZE 16
/* Call AesGenTables one time before other AES functions */
void AesGenTables(void);
/* UInt32 pointers must be 16-byte aligned */
/* 16-byte (4 * 32-bit words) blocks: 1 (IV) + 1 (keyMode) + 15 (AES-256 roundKeys) */
#define AES_NUM_IVMRK_WORDS ((1 + 1 + 15) * 4)
/* aes - 16-byte aligned pointer to keyMode+roundKeys sequence */
/* keySize = 16 or 24 or 32 (bytes) */
typedef void (MY_FAST_CALL *AES_SET_KEY_FUNC)(UInt32 *aes, const Byte *key, unsigned keySize);
void MY_FAST_CALL Aes_SetKey_Enc(UInt32 *aes, const Byte *key, unsigned keySize);
void MY_FAST_CALL Aes_SetKey_Dec(UInt32 *aes, const Byte *key, unsigned keySize);
/* ivAes - 16-byte aligned pointer to iv+keyMode+roundKeys sequence: UInt32[AES_NUM_IVMRK_WORDS] */
void AesCbc_Init(UInt32 *ivAes, const Byte *iv); /* iv size is AES_BLOCK_SIZE */
/* data - 16-byte aligned pointer to data */
/* numBlocks - the number of 16-byte blocks in data array */
typedef void (MY_FAST_CALL *AES_CODE_FUNC)(UInt32 *ivAes, Byte *data, size_t numBlocks);
extern AES_CODE_FUNC g_AesCbc_Encode;
extern AES_CODE_FUNC g_AesCbc_Decode;
extern AES_CODE_FUNC g_AesCtr_Code;
EXTERN_C_END
#endif

@ -0,0 +1,184 @@
/* AesOpt.c -- Intel's AES
2017-06-08 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#ifdef MY_CPU_X86_OR_AMD64
#if (_MSC_VER > 1500) || (_MSC_FULL_VER >= 150030729)
#define USE_INTEL_AES
#endif
#endif
#ifdef USE_INTEL_AES
#include <wmmintrin.h>
void MY_FAST_CALL AesCbc_Encode_Intel(__m128i *p, __m128i *data, size_t numBlocks)
{
__m128i m = *p;
for (; numBlocks != 0; numBlocks--, data++)
{
UInt32 numRounds2 = *(const UInt32 *)(p + 1) - 1;
const __m128i *w = p + 3;
m = _mm_xor_si128(m, *data);
m = _mm_xor_si128(m, p[2]);
do
{
m = _mm_aesenc_si128(m, w[0]);
m = _mm_aesenc_si128(m, w[1]);
w += 2;
}
while (--numRounds2 != 0);
m = _mm_aesenc_si128(m, w[0]);
m = _mm_aesenclast_si128(m, w[1]);
*data = m;
}
*p = m;
}
#define NUM_WAYS 3
#define AES_OP_W(op, n) { \
const __m128i t = w[n]; \
m0 = op(m0, t); \
m1 = op(m1, t); \
m2 = op(m2, t); \
}
#define AES_DEC(n) AES_OP_W(_mm_aesdec_si128, n)
#define AES_DEC_LAST(n) AES_OP_W(_mm_aesdeclast_si128, n)
#define AES_ENC(n) AES_OP_W(_mm_aesenc_si128, n)
#define AES_ENC_LAST(n) AES_OP_W(_mm_aesenclast_si128, n)
void MY_FAST_CALL AesCbc_Decode_Intel(__m128i *p, __m128i *data, size_t numBlocks)
{
__m128i iv = *p;
for (; numBlocks >= NUM_WAYS; numBlocks -= NUM_WAYS, data += NUM_WAYS)
{
UInt32 numRounds2 = *(const UInt32 *)(p + 1);
const __m128i *w = p + numRounds2 * 2;
__m128i m0, m1, m2;
{
const __m128i t = w[2];
m0 = _mm_xor_si128(t, data[0]);
m1 = _mm_xor_si128(t, data[1]);
m2 = _mm_xor_si128(t, data[2]);
}
numRounds2--;
do
{
AES_DEC(1)
AES_DEC(0)
w -= 2;
}
while (--numRounds2 != 0);
AES_DEC(1)
AES_DEC_LAST(0)
{
__m128i t;
t = _mm_xor_si128(m0, iv); iv = data[0]; data[0] = t;
t = _mm_xor_si128(m1, iv); iv = data[1]; data[1] = t;
t = _mm_xor_si128(m2, iv); iv = data[2]; data[2] = t;
}
}
for (; numBlocks != 0; numBlocks--, data++)
{
UInt32 numRounds2 = *(const UInt32 *)(p + 1);
const __m128i *w = p + numRounds2 * 2;
__m128i m = _mm_xor_si128(w[2], *data);
numRounds2--;
do
{
m = _mm_aesdec_si128(m, w[1]);
m = _mm_aesdec_si128(m, w[0]);
w -= 2;
}
while (--numRounds2 != 0);
m = _mm_aesdec_si128(m, w[1]);
m = _mm_aesdeclast_si128(m, w[0]);
m = _mm_xor_si128(m, iv);
iv = *data;
*data = m;
}
*p = iv;
}
void MY_FAST_CALL AesCtr_Code_Intel(__m128i *p, __m128i *data, size_t numBlocks)
{
__m128i ctr = *p;
__m128i one;
one.m128i_u64[0] = 1;
one.m128i_u64[1] = 0;
for (; numBlocks >= NUM_WAYS; numBlocks -= NUM_WAYS, data += NUM_WAYS)
{
UInt32 numRounds2 = *(const UInt32 *)(p + 1) - 1;
const __m128i *w = p;
__m128i m0, m1, m2;
{
const __m128i t = w[2];
ctr = _mm_add_epi64(ctr, one); m0 = _mm_xor_si128(ctr, t);
ctr = _mm_add_epi64(ctr, one); m1 = _mm_xor_si128(ctr, t);
ctr = _mm_add_epi64(ctr, one); m2 = _mm_xor_si128(ctr, t);
}
w += 3;
do
{
AES_ENC(0)
AES_ENC(1)
w += 2;
}
while (--numRounds2 != 0);
AES_ENC(0)
AES_ENC_LAST(1)
data[0] = _mm_xor_si128(data[0], m0);
data[1] = _mm_xor_si128(data[1], m1);
data[2] = _mm_xor_si128(data[2], m2);
}
for (; numBlocks != 0; numBlocks--, data++)
{
UInt32 numRounds2 = *(const UInt32 *)(p + 1) - 1;
const __m128i *w = p;
__m128i m;
ctr = _mm_add_epi64(ctr, one);
m = _mm_xor_si128(ctr, p[2]);
w += 3;
do
{
m = _mm_aesenc_si128(m, w[0]);
m = _mm_aesenc_si128(m, w[1]);
w += 2;
}
while (--numRounds2 != 0);
m = _mm_aesenc_si128(m, w[0]);
m = _mm_aesenclast_si128(m, w[1]);
*data = _mm_xor_si128(*data, m);
}
*p = ctr;
}
#else
void MY_FAST_CALL AesCbc_Encode(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Decode(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCtr_Code(UInt32 *ivAes, Byte *data, size_t numBlocks);
void MY_FAST_CALL AesCbc_Encode_Intel(UInt32 *p, Byte *data, size_t numBlocks)
{
AesCbc_Encode(p, data, numBlocks);
}
void MY_FAST_CALL AesCbc_Decode_Intel(UInt32 *p, Byte *data, size_t numBlocks)
{
AesCbc_Decode(p, data, numBlocks);
}
void MY_FAST_CALL AesCtr_Code_Intel(UInt32 *p, Byte *data, size_t numBlocks)
{
AesCtr_Code(p, data, numBlocks);
}
#endif

@ -0,0 +1,455 @@
/* Alloc.c -- Memory allocation functions
2018-04-27 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#endif
#include <stdlib.h>
#include "Alloc.h"
/* #define _SZ_ALLOC_DEBUG */
/* use _SZ_ALLOC_DEBUG to debug alloc/free operations */
#ifdef _SZ_ALLOC_DEBUG
#include <stdio.h>
int g_allocCount = 0;
int g_allocCountMid = 0;
int g_allocCountBig = 0;
#define CONVERT_INT_TO_STR(charType, tempSize) \
unsigned char temp[tempSize]; unsigned i = 0; \
while (val >= 10) { temp[i++] = (unsigned char)('0' + (unsigned)(val % 10)); val /= 10; } \
*s++ = (charType)('0' + (unsigned)val); \
while (i != 0) { i--; *s++ = temp[i]; } \
*s = 0;
static void ConvertUInt64ToString(UInt64 val, char *s)
{
CONVERT_INT_TO_STR(char, 24);
}
#define GET_HEX_CHAR(t) ((char)(((t < 10) ? ('0' + t) : ('A' + (t - 10)))))
static void ConvertUInt64ToHex(UInt64 val, char *s)
{
UInt64 v = val;
unsigned i;
for (i = 1;; i++)
{
v >>= 4;
if (v == 0)
break;
}
s[i] = 0;
do
{
unsigned t = (unsigned)(val & 0xF);
val >>= 4;
s[--i] = GET_HEX_CHAR(t);
}
while (i);
}
#define DEBUG_OUT_STREAM stderr
static void Print(const char *s)
{
fputs(s, DEBUG_OUT_STREAM);
}
static void PrintAligned(const char *s, size_t align)
{
size_t len = strlen(s);
for(;;)
{
fputc(' ', DEBUG_OUT_STREAM);
if (len >= align)
break;
++len;
}
Print(s);
}
static void PrintLn()
{
Print("\n");
}
static void PrintHex(UInt64 v, size_t align)
{
char s[32];
ConvertUInt64ToHex(v, s);
PrintAligned(s, align);
}
static void PrintDec(UInt64 v, size_t align)
{
char s[32];
ConvertUInt64ToString(v, s);
PrintAligned(s, align);
}
static void PrintAddr(void *p)
{
PrintHex((UInt64)(size_t)(ptrdiff_t)p, 12);
}
#define PRINT_ALLOC(name, cnt, size, ptr) \
Print(name " "); \
PrintDec(cnt++, 10); \
PrintHex(size, 10); \
PrintAddr(ptr); \
PrintLn();
#define PRINT_FREE(name, cnt, ptr) if (ptr) { \
Print(name " "); \
PrintDec(--cnt, 10); \
PrintAddr(ptr); \
PrintLn(); }
#else
#define PRINT_ALLOC(name, cnt, size, ptr)
#define PRINT_FREE(name, cnt, ptr)
#define Print(s)
#define PrintLn()
#define PrintHex(v, align)
#define PrintDec(v, align)
#define PrintAddr(p)
#endif
void *MyAlloc(size_t size)
{
if (size == 0)
return NULL;
#ifdef _SZ_ALLOC_DEBUG
{
void *p = malloc(size);
PRINT_ALLOC("Alloc ", g_allocCount, size, p);
return p;
}
#else
return malloc(size);
#endif
}
void MyFree(void *address)
{
PRINT_FREE("Free ", g_allocCount, address);
free(address);
}
#ifdef _WIN32
void *MidAlloc(size_t size)
{
if (size == 0)
return NULL;
PRINT_ALLOC("Alloc-Mid", g_allocCountMid, size, NULL);
return VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
}
void MidFree(void *address)
{
PRINT_FREE("Free-Mid", g_allocCountMid, address);
if (!address)
return;
VirtualFree(address, 0, MEM_RELEASE);
}
#ifndef MEM_LARGE_PAGES
#undef _7ZIP_LARGE_PAGES
#endif
#ifdef _7ZIP_LARGE_PAGES
SIZE_T g_LargePageSize = 0;
typedef SIZE_T (WINAPI *GetLargePageMinimumP)();
#endif
void SetLargePageSize()
{
#ifdef _7ZIP_LARGE_PAGES
SIZE_T size;
GetLargePageMinimumP largePageMinimum = (GetLargePageMinimumP)
GetProcAddress(GetModuleHandle(TEXT("kernel32.dll")), "GetLargePageMinimum");
if (!largePageMinimum)
return;
size = largePageMinimum();
if (size == 0 || (size & (size - 1)) != 0)
return;
g_LargePageSize = size;
#endif
}
void *BigAlloc(size_t size)
{
if (size == 0)
return NULL;
PRINT_ALLOC("Alloc-Big", g_allocCountBig, size, NULL);
#ifdef _7ZIP_LARGE_PAGES
{
SIZE_T ps = g_LargePageSize;
if (ps != 0 && ps <= (1 << 30) && size > (ps / 2))
{
size_t size2;
ps--;
size2 = (size + ps) & ~ps;
if (size2 >= size)
{
void *res = VirtualAlloc(NULL, size2, MEM_COMMIT | MEM_LARGE_PAGES, PAGE_READWRITE);
if (res)
return res;
}
}
}
#endif
return VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
}
void BigFree(void *address)
{
PRINT_FREE("Free-Big", g_allocCountBig, address);
if (!address)
return;
VirtualFree(address, 0, MEM_RELEASE);
}
#endif
static void *SzAlloc(ISzAllocPtr p, size_t size) { UNUSED_VAR(p); return MyAlloc(size); }
static void SzFree(ISzAllocPtr p, void *address) { UNUSED_VAR(p); MyFree(address); }
const ISzAlloc g_Alloc = { SzAlloc, SzFree };
static void *SzMidAlloc(ISzAllocPtr p, size_t size) { UNUSED_VAR(p); return MidAlloc(size); }
static void SzMidFree(ISzAllocPtr p, void *address) { UNUSED_VAR(p); MidFree(address); }
const ISzAlloc g_MidAlloc = { SzMidAlloc, SzMidFree };
static void *SzBigAlloc(ISzAllocPtr p, size_t size) { UNUSED_VAR(p); return BigAlloc(size); }
static void SzBigFree(ISzAllocPtr p, void *address) { UNUSED_VAR(p); BigFree(address); }
const ISzAlloc g_BigAlloc = { SzBigAlloc, SzBigFree };
/*
uintptr_t : <stdint.h> C99 (optional)
: unsupported in VS6
*/
#ifdef _WIN32
typedef UINT_PTR UIntPtr;
#else
/*
typedef uintptr_t UIntPtr;
*/
typedef ptrdiff_t UIntPtr;
#endif
#define ADJUST_ALLOC_SIZE 0
/*
#define ADJUST_ALLOC_SIZE (sizeof(void *) - 1)
*/
/*
Use (ADJUST_ALLOC_SIZE = (sizeof(void *) - 1)), if
MyAlloc() can return address that is NOT multiple of sizeof(void *).
*/
/*
#define MY_ALIGN_PTR_DOWN(p, align) ((void *)((char *)(p) - ((size_t)(UIntPtr)(p) & ((align) - 1))))
*/
#define MY_ALIGN_PTR_DOWN(p, align) ((void *)((((UIntPtr)(p)) & ~((UIntPtr)(align) - 1))))
#define MY_ALIGN_PTR_UP_PLUS(p, align) MY_ALIGN_PTR_DOWN(((char *)(p) + (align) + ADJUST_ALLOC_SIZE), align)
#if (_POSIX_C_SOURCE >= 200112L) && !defined(_WIN32)
#define USE_posix_memalign
#endif
/*
This posix_memalign() is for test purposes only.
We also need special Free() function instead of free(),
if this posix_memalign() is used.
*/
/*
static int posix_memalign(void **ptr, size_t align, size_t size)
{
size_t newSize = size + align;
void *p;
void *pAligned;
*ptr = NULL;
if (newSize < size)
return 12; // ENOMEM
p = MyAlloc(newSize);
if (!p)
return 12; // ENOMEM
pAligned = MY_ALIGN_PTR_UP_PLUS(p, align);
((void **)pAligned)[-1] = p;
*ptr = pAligned;
return 0;
}
*/
/*
ALLOC_ALIGN_SIZE >= sizeof(void *)
ALLOC_ALIGN_SIZE >= cache_line_size
*/
#define ALLOC_ALIGN_SIZE ((size_t)1 << 7)
static void *SzAlignedAlloc(ISzAllocPtr pp, size_t size)
{
#ifndef USE_posix_memalign
void *p;
void *pAligned;
size_t newSize;
UNUSED_VAR(pp);
/* also we can allocate additional dummy ALLOC_ALIGN_SIZE bytes after aligned
block to prevent cache line sharing with another allocated blocks */
newSize = size + ALLOC_ALIGN_SIZE * 1 + ADJUST_ALLOC_SIZE;
if (newSize < size)
return NULL;
p = MyAlloc(newSize);
if (!p)
return NULL;
pAligned = MY_ALIGN_PTR_UP_PLUS(p, ALLOC_ALIGN_SIZE);
Print(" size="); PrintHex(size, 8);
Print(" a_size="); PrintHex(newSize, 8);
Print(" ptr="); PrintAddr(p);
Print(" a_ptr="); PrintAddr(pAligned);
PrintLn();
((void **)pAligned)[-1] = p;
return pAligned;
#else
void *p;
UNUSED_VAR(pp);
if (posix_memalign(&p, ALLOC_ALIGN_SIZE, size))
return NULL;
Print(" posix_memalign="); PrintAddr(p);
PrintLn();
return p;
#endif
}
static void SzAlignedFree(ISzAllocPtr pp, void *address)
{
UNUSED_VAR(pp);
#ifndef USE_posix_memalign
if (address)
MyFree(((void **)address)[-1]);
#else
free(address);
#endif
}
const ISzAlloc g_AlignedAlloc = { SzAlignedAlloc, SzAlignedFree };
#define MY_ALIGN_PTR_DOWN_1(p) MY_ALIGN_PTR_DOWN(p, sizeof(void *))
/* we align ptr to support cases where CAlignOffsetAlloc::offset is not multiply of sizeof(void *) */
#define REAL_BLOCK_PTR_VAR(p) ((void **)MY_ALIGN_PTR_DOWN_1(p))[-1]
/*
#define REAL_BLOCK_PTR_VAR(p) ((void **)(p))[-1]
*/
static void *AlignOffsetAlloc_Alloc(ISzAllocPtr pp, size_t size)
{
CAlignOffsetAlloc *p = CONTAINER_FROM_VTBL(pp, CAlignOffsetAlloc, vt);
void *adr;
void *pAligned;
size_t newSize;
size_t extra;
size_t alignSize = (size_t)1 << p->numAlignBits;
if (alignSize < sizeof(void *))
alignSize = sizeof(void *);
if (p->offset >= alignSize)
return NULL;
/* also we can allocate additional dummy ALLOC_ALIGN_SIZE bytes after aligned
block to prevent cache line sharing with another allocated blocks */
extra = p->offset & (sizeof(void *) - 1);
newSize = size + alignSize + extra + ADJUST_ALLOC_SIZE;
if (newSize < size)
return NULL;
adr = ISzAlloc_Alloc(p->baseAlloc, newSize);
if (!adr)
return NULL;
pAligned = (char *)MY_ALIGN_PTR_DOWN((char *)adr +
alignSize - p->offset + extra + ADJUST_ALLOC_SIZE, alignSize) + p->offset;
PrintLn();
Print("- Aligned: ");
Print(" size="); PrintHex(size, 8);
Print(" a_size="); PrintHex(newSize, 8);
Print(" ptr="); PrintAddr(adr);
Print(" a_ptr="); PrintAddr(pAligned);
PrintLn();
REAL_BLOCK_PTR_VAR(pAligned) = adr;
return pAligned;
}
static void AlignOffsetAlloc_Free(ISzAllocPtr pp, void *address)
{
if (address)
{
CAlignOffsetAlloc *p = CONTAINER_FROM_VTBL(pp, CAlignOffsetAlloc, vt);
PrintLn();
Print("- Aligned Free: ");
PrintLn();
ISzAlloc_Free(p->baseAlloc, REAL_BLOCK_PTR_VAR(address));
}
}
void AlignOffsetAlloc_CreateVTable(CAlignOffsetAlloc *p)
{
p->vt.Alloc = AlignOffsetAlloc_Alloc;
p->vt.Free = AlignOffsetAlloc_Free;
}

@ -0,0 +1,51 @@
/* Alloc.h -- Memory allocation functions
2018-02-19 : Igor Pavlov : Public domain */
#ifndef __COMMON_ALLOC_H
#define __COMMON_ALLOC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
void *MyAlloc(size_t size);
void MyFree(void *address);
#ifdef _WIN32
void SetLargePageSize();
void *MidAlloc(size_t size);
void MidFree(void *address);
void *BigAlloc(size_t size);
void BigFree(void *address);
#else
#define MidAlloc(size) MyAlloc(size)
#define MidFree(address) MyFree(address)
#define BigAlloc(size) MyAlloc(size)
#define BigFree(address) MyFree(address)
#endif
extern const ISzAlloc g_Alloc;
extern const ISzAlloc g_BigAlloc;
extern const ISzAlloc g_MidAlloc;
extern const ISzAlloc g_AlignedAlloc;
typedef struct
{
ISzAlloc vt;
ISzAllocPtr baseAlloc;
unsigned numAlignBits; /* ((1 << numAlignBits) >= sizeof(void *)) */
size_t offset; /* (offset == (k * sizeof(void *)) && offset < (1 << numAlignBits) */
} CAlignOffsetAlloc;
void AlignOffsetAlloc_CreateVTable(CAlignOffsetAlloc *p);
EXTERN_C_END
#endif

@ -0,0 +1,257 @@
/* Bcj2.c -- BCJ2 Decoder (Converter for x86 code)
2018-04-28 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Bcj2.h"
#include "CpuArch.h"
#define CProb UInt16
#define kTopValue ((UInt32)1 << 24)
#define kNumModelBits 11
#define kBitModelTotal (1 << kNumModelBits)
#define kNumMoveBits 5
#define _IF_BIT_0 ttt = *prob; bound = (p->range >> kNumModelBits) * ttt; if (p->code < bound)
#define _UPDATE_0 p->range = bound; *prob = (CProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
#define _UPDATE_1 p->range -= bound; p->code -= bound; *prob = (CProb)(ttt - (ttt >> kNumMoveBits));
void Bcj2Dec_Init(CBcj2Dec *p)
{
unsigned i;
p->state = BCJ2_DEC_STATE_OK;
p->ip = 0;
p->temp[3] = 0;
p->range = 0;
p->code = 0;
for (i = 0; i < sizeof(p->probs) / sizeof(p->probs[0]); i++)
p->probs[i] = kBitModelTotal >> 1;
}
SRes Bcj2Dec_Decode(CBcj2Dec *p)
{
if (p->range <= 5)
{
p->state = BCJ2_DEC_STATE_OK;
for (; p->range != 5; p->range++)
{
if (p->range == 1 && p->code != 0)
return SZ_ERROR_DATA;
if (p->bufs[BCJ2_STREAM_RC] == p->lims[BCJ2_STREAM_RC])
{
p->state = BCJ2_STREAM_RC;
return SZ_OK;
}
p->code = (p->code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
}
if (p->code == 0xFFFFFFFF)
return SZ_ERROR_DATA;
p->range = 0xFFFFFFFF;
}
else if (p->state >= BCJ2_DEC_STATE_ORIG_0)
{
while (p->state <= BCJ2_DEC_STATE_ORIG_3)
{
Byte *dest = p->dest;
if (dest == p->destLim)
return SZ_OK;
*dest = p->temp[(size_t)p->state - BCJ2_DEC_STATE_ORIG_0];
p->state++;
p->dest = dest + 1;
}
}
/*
if (BCJ2_IS_32BIT_STREAM(p->state))
{
const Byte *cur = p->bufs[p->state];
if (cur == p->lims[p->state])
return SZ_OK;
p->bufs[p->state] = cur + 4;
{
UInt32 val;
Byte *dest;
SizeT rem;
p->ip += 4;
val = GetBe32(cur) - p->ip;
dest = p->dest;
rem = p->destLim - dest;
if (rem < 4)
{
SizeT i;
SetUi32(p->temp, val);
for (i = 0; i < rem; i++)
dest[i] = p->temp[i];
p->dest = dest + rem;
p->state = BCJ2_DEC_STATE_ORIG_0 + (unsigned)rem;
return SZ_OK;
}
SetUi32(dest, val);
p->temp[3] = (Byte)(val >> 24);
p->dest = dest + 4;
p->state = BCJ2_DEC_STATE_OK;
}
}
*/
for (;;)
{
if (BCJ2_IS_32BIT_STREAM(p->state))
p->state = BCJ2_DEC_STATE_OK;
else
{
if (p->range < kTopValue)
{
if (p->bufs[BCJ2_STREAM_RC] == p->lims[BCJ2_STREAM_RC])
{
p->state = BCJ2_STREAM_RC;
return SZ_OK;
}
p->range <<= 8;
p->code = (p->code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
}
{
const Byte *src = p->bufs[BCJ2_STREAM_MAIN];
const Byte *srcLim;
Byte *dest;
SizeT num = p->lims[BCJ2_STREAM_MAIN] - src;
if (num == 0)
{
p->state = BCJ2_STREAM_MAIN;
return SZ_OK;
}
dest = p->dest;
if (num > (SizeT)(p->destLim - dest))
{
num = p->destLim - dest;
if (num == 0)
{
p->state = BCJ2_DEC_STATE_ORIG;
return SZ_OK;
}
}
srcLim = src + num;
if (p->temp[3] == 0x0F && (src[0] & 0xF0) == 0x80)
*dest = src[0];
else for (;;)
{
Byte b = *src;
*dest = b;
if (b != 0x0F)
{
if ((b & 0xFE) == 0xE8)
break;
dest++;
if (++src != srcLim)
continue;
break;
}
dest++;
if (++src == srcLim)
break;
if ((*src & 0xF0) != 0x80)
continue;
*dest = *src;
break;
}
num = src - p->bufs[BCJ2_STREAM_MAIN];
if (src == srcLim)
{
p->temp[3] = src[-1];
p->bufs[BCJ2_STREAM_MAIN] = src;
p->ip += (UInt32)num;
p->dest += num;
p->state =
p->bufs[BCJ2_STREAM_MAIN] ==
p->lims[BCJ2_STREAM_MAIN] ?
(unsigned)BCJ2_STREAM_MAIN :
(unsigned)BCJ2_DEC_STATE_ORIG;
return SZ_OK;
}
{
UInt32 bound, ttt;
CProb *prob;
Byte b = src[0];
Byte prev = (Byte)(num == 0 ? p->temp[3] : src[-1]);
p->temp[3] = b;
p->bufs[BCJ2_STREAM_MAIN] = src + 1;
num++;
p->ip += (UInt32)num;
p->dest += num;
prob = p->probs + (unsigned)(b == 0xE8 ? 2 + (unsigned)prev : (b == 0xE9 ? 1 : 0));
_IF_BIT_0
{
_UPDATE_0
continue;
}
_UPDATE_1
}
}
}
{
UInt32 val;
unsigned cj = (p->temp[3] == 0xE8) ? BCJ2_STREAM_CALL : BCJ2_STREAM_JUMP;
const Byte *cur = p->bufs[cj];
Byte *dest;
SizeT rem;
if (cur == p->lims[cj])
{
p->state = cj;
break;
}
val = GetBe32(cur);
p->bufs[cj] = cur + 4;
p->ip += 4;
val -= p->ip;
dest = p->dest;
rem = p->destLim - dest;
if (rem < 4)
{
p->temp[0] = (Byte)val; if (rem > 0) dest[0] = (Byte)val; val >>= 8;
p->temp[1] = (Byte)val; if (rem > 1) dest[1] = (Byte)val; val >>= 8;
p->temp[2] = (Byte)val; if (rem > 2) dest[2] = (Byte)val; val >>= 8;
p->temp[3] = (Byte)val;
p->dest = dest + rem;
p->state = BCJ2_DEC_STATE_ORIG_0 + (unsigned)rem;
break;
}
SetUi32(dest, val);
p->temp[3] = (Byte)(val >> 24);
p->dest = dest + 4;
}
}
if (p->range < kTopValue && p->bufs[BCJ2_STREAM_RC] != p->lims[BCJ2_STREAM_RC])
{
p->range <<= 8;
p->code = (p->code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
}
return SZ_OK;
}

@ -0,0 +1,146 @@
/* Bcj2.h -- BCJ2 Converter for x86 code
2014-11-10 : Igor Pavlov : Public domain */
#ifndef __BCJ2_H
#define __BCJ2_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define BCJ2_NUM_STREAMS 4
enum
{
BCJ2_STREAM_MAIN,
BCJ2_STREAM_CALL,
BCJ2_STREAM_JUMP,
BCJ2_STREAM_RC
};
enum
{
BCJ2_DEC_STATE_ORIG_0 = BCJ2_NUM_STREAMS,
BCJ2_DEC_STATE_ORIG_1,
BCJ2_DEC_STATE_ORIG_2,
BCJ2_DEC_STATE_ORIG_3,
BCJ2_DEC_STATE_ORIG,
BCJ2_DEC_STATE_OK
};
enum
{
BCJ2_ENC_STATE_ORIG = BCJ2_NUM_STREAMS,
BCJ2_ENC_STATE_OK
};
#define BCJ2_IS_32BIT_STREAM(s) ((s) == BCJ2_STREAM_CALL || (s) == BCJ2_STREAM_JUMP)
/*
CBcj2Dec / CBcj2Enc
bufs sizes:
BUF_SIZE(n) = lims[n] - bufs[n]
bufs sizes for BCJ2_STREAM_CALL and BCJ2_STREAM_JUMP must be mutliply of 4:
(BUF_SIZE(BCJ2_STREAM_CALL) & 3) == 0
(BUF_SIZE(BCJ2_STREAM_JUMP) & 3) == 0
*/
/*
CBcj2Dec:
dest is allowed to overlap with bufs[BCJ2_STREAM_MAIN], with the following conditions:
bufs[BCJ2_STREAM_MAIN] >= dest &&
bufs[BCJ2_STREAM_MAIN] - dest >= tempReserv +
BUF_SIZE(BCJ2_STREAM_CALL) +
BUF_SIZE(BCJ2_STREAM_JUMP)
tempReserv = 0 : for first call of Bcj2Dec_Decode
tempReserv = 4 : for any other calls of Bcj2Dec_Decode
overlap with offset = 1 is not allowed
*/
typedef struct
{
const Byte *bufs[BCJ2_NUM_STREAMS];
const Byte *lims[BCJ2_NUM_STREAMS];
Byte *dest;
const Byte *destLim;
unsigned state; /* BCJ2_STREAM_MAIN has more priority than BCJ2_STATE_ORIG */
UInt32 ip;
Byte temp[4];
UInt32 range;
UInt32 code;
UInt16 probs[2 + 256];
} CBcj2Dec;
void Bcj2Dec_Init(CBcj2Dec *p);
/* Returns: SZ_OK or SZ_ERROR_DATA */
SRes Bcj2Dec_Decode(CBcj2Dec *p);
#define Bcj2Dec_IsFinished(_p_) ((_p_)->code == 0)
typedef enum
{
BCJ2_ENC_FINISH_MODE_CONTINUE,
BCJ2_ENC_FINISH_MODE_END_BLOCK,
BCJ2_ENC_FINISH_MODE_END_STREAM
} EBcj2Enc_FinishMode;
typedef struct
{
Byte *bufs[BCJ2_NUM_STREAMS];
const Byte *lims[BCJ2_NUM_STREAMS];
const Byte *src;
const Byte *srcLim;
unsigned state;
EBcj2Enc_FinishMode finishMode;
Byte prevByte;
Byte cache;
UInt32 range;
UInt64 low;
UInt64 cacheSize;
UInt32 ip;
/* 32-bit ralative offset in JUMP/CALL commands is
- (mod 4 GB) in 32-bit mode
- signed Int32 in 64-bit mode
We use (mod 4 GB) check for fileSize.
Use fileSize up to 2 GB, if you want to support 32-bit and 64-bit code conversion. */
UInt32 fileIp;
UInt32 fileSize; /* (fileSize <= ((UInt32)1 << 31)), 0 means no_limit */
UInt32 relatLimit; /* (relatLimit <= ((UInt32)1 << 31)), 0 means desable_conversion */
UInt32 tempTarget;
unsigned tempPos;
Byte temp[4 * 2];
unsigned flushPos;
UInt16 probs[2 + 256];
} CBcj2Enc;
void Bcj2Enc_Init(CBcj2Enc *p);
void Bcj2Enc_Encode(CBcj2Enc *p);
#define Bcj2Enc_Get_InputData_Size(p) ((SizeT)((p)->srcLim - (p)->src) + (p)->tempPos)
#define Bcj2Enc_IsFinished(p) ((p)->flushPos == 5)
#define BCJ2_RELAT_LIMIT_NUM_BITS 26
#define BCJ2_RELAT_LIMIT ((UInt32)1 << BCJ2_RELAT_LIMIT_NUM_BITS)
/* limit for CBcj2Enc::fileSize variable */
#define BCJ2_FileSize_MAX ((UInt32)1 << 31)
EXTERN_C_END
#endif

@ -0,0 +1,311 @@
/* Bcj2Enc.c -- BCJ2 Encoder (Converter for x86 code)
2019-02-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
/* #define SHOW_STAT */
#ifdef SHOW_STAT
#include <stdio.h>
#define PRF(x) x
#else
#define PRF(x)
#endif
#include <string.h>
#include "Bcj2.h"
#include "CpuArch.h"
#define CProb UInt16
#define kTopValue ((UInt32)1 << 24)
#define kNumModelBits 11
#define kBitModelTotal (1 << kNumModelBits)
#define kNumMoveBits 5
void Bcj2Enc_Init(CBcj2Enc *p)
{
unsigned i;
p->state = BCJ2_ENC_STATE_OK;
p->finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
p->prevByte = 0;
p->cache = 0;
p->range = 0xFFFFFFFF;
p->low = 0;
p->cacheSize = 1;
p->ip = 0;
p->fileIp = 0;
p->fileSize = 0;
p->relatLimit = BCJ2_RELAT_LIMIT;
p->tempPos = 0;
p->flushPos = 0;
for (i = 0; i < sizeof(p->probs) / sizeof(p->probs[0]); i++)
p->probs[i] = kBitModelTotal >> 1;
}
static BoolInt MY_FAST_CALL RangeEnc_ShiftLow(CBcj2Enc *p)
{
if ((UInt32)p->low < (UInt32)0xFF000000 || (UInt32)(p->low >> 32) != 0)
{
Byte *buf = p->bufs[BCJ2_STREAM_RC];
do
{
if (buf == p->lims[BCJ2_STREAM_RC])
{
p->state = BCJ2_STREAM_RC;
p->bufs[BCJ2_STREAM_RC] = buf;
return True;
}
*buf++ = (Byte)(p->cache + (Byte)(p->low >> 32));
p->cache = 0xFF;
}
while (--p->cacheSize);
p->bufs[BCJ2_STREAM_RC] = buf;
p->cache = (Byte)((UInt32)p->low >> 24);
}
p->cacheSize++;
p->low = (UInt32)p->low << 8;
return False;
}
static void Bcj2Enc_Encode_2(CBcj2Enc *p)
{
if (BCJ2_IS_32BIT_STREAM(p->state))
{
Byte *cur = p->bufs[p->state];
if (cur == p->lims[p->state])
return;
SetBe32(cur, p->tempTarget);
p->bufs[p->state] = cur + 4;
}
p->state = BCJ2_ENC_STATE_ORIG;
for (;;)
{
if (p->range < kTopValue)
{
if (RangeEnc_ShiftLow(p))
return;
p->range <<= 8;
}
{
{
const Byte *src = p->src;
const Byte *srcLim;
Byte *dest;
SizeT num = p->srcLim - src;
if (p->finishMode == BCJ2_ENC_FINISH_MODE_CONTINUE)
{
if (num <= 4)
return;
num -= 4;
}
else if (num == 0)
break;
dest = p->bufs[BCJ2_STREAM_MAIN];
if (num > (SizeT)(p->lims[BCJ2_STREAM_MAIN] - dest))
{
num = p->lims[BCJ2_STREAM_MAIN] - dest;
if (num == 0)
{
p->state = BCJ2_STREAM_MAIN;
return;
}
}
srcLim = src + num;
if (p->prevByte == 0x0F && (src[0] & 0xF0) == 0x80)
*dest = src[0];
else for (;;)
{
Byte b = *src;
*dest = b;
if (b != 0x0F)
{
if ((b & 0xFE) == 0xE8)
break;
dest++;
if (++src != srcLim)
continue;
break;
}
dest++;
if (++src == srcLim)
break;
if ((*src & 0xF0) != 0x80)
continue;
*dest = *src;
break;
}
num = src - p->src;
if (src == srcLim)
{
p->prevByte = src[-1];
p->bufs[BCJ2_STREAM_MAIN] = dest;
p->src = src;
p->ip += (UInt32)num;
continue;
}
{
Byte context = (Byte)(num == 0 ? p->prevByte : src[-1]);
BoolInt needConvert;
p->bufs[BCJ2_STREAM_MAIN] = dest + 1;
p->ip += (UInt32)num + 1;
src++;
needConvert = False;
if ((SizeT)(p->srcLim - src) >= 4)
{
UInt32 relatVal = GetUi32(src);
if ((p->fileSize == 0 || (UInt32)(p->ip + 4 + relatVal - p->fileIp) < p->fileSize)
&& ((relatVal + p->relatLimit) >> 1) < p->relatLimit)
needConvert = True;
}
{
UInt32 bound;
unsigned ttt;
Byte b = src[-1];
CProb *prob = p->probs + (unsigned)(b == 0xE8 ? 2 + (unsigned)context : (b == 0xE9 ? 1 : 0));
ttt = *prob;
bound = (p->range >> kNumModelBits) * ttt;
if (!needConvert)
{
p->range = bound;
*prob = (CProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
p->src = src;
p->prevByte = b;
continue;
}
p->low += bound;
p->range -= bound;
*prob = (CProb)(ttt - (ttt >> kNumMoveBits));
{
UInt32 relatVal = GetUi32(src);
UInt32 absVal;
p->ip += 4;
absVal = p->ip + relatVal;
p->prevByte = src[3];
src += 4;
p->src = src;
{
unsigned cj = (b == 0xE8) ? BCJ2_STREAM_CALL : BCJ2_STREAM_JUMP;
Byte *cur = p->bufs[cj];
if (cur == p->lims[cj])
{
p->state = cj;
p->tempTarget = absVal;
return;
}
SetBe32(cur, absVal);
p->bufs[cj] = cur + 4;
}
}
}
}
}
}
}
if (p->finishMode != BCJ2_ENC_FINISH_MODE_END_STREAM)
return;
for (; p->flushPos < 5; p->flushPos++)
if (RangeEnc_ShiftLow(p))
return;
p->state = BCJ2_ENC_STATE_OK;
}
void Bcj2Enc_Encode(CBcj2Enc *p)
{
PRF(printf("\n"));
PRF(printf("---- ip = %8d tempPos = %8d src = %8d\n", p->ip, p->tempPos, p->srcLim - p->src));
if (p->tempPos != 0)
{
unsigned extra = 0;
for (;;)
{
const Byte *src = p->src;
const Byte *srcLim = p->srcLim;
EBcj2Enc_FinishMode finishMode = p->finishMode;
p->src = p->temp;
p->srcLim = p->temp + p->tempPos;
if (src != srcLim)
p->finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
PRF(printf(" ip = %8d tempPos = %8d src = %8d\n", p->ip, p->tempPos, p->srcLim - p->src));
Bcj2Enc_Encode_2(p);
{
unsigned num = (unsigned)(p->src - p->temp);
unsigned tempPos = p->tempPos - num;
unsigned i;
p->tempPos = tempPos;
for (i = 0; i < tempPos; i++)
p->temp[i] = p->temp[(size_t)i + num];
p->src = src;
p->srcLim = srcLim;
p->finishMode = finishMode;
if (p->state != BCJ2_ENC_STATE_ORIG || src == srcLim)
return;
if (extra >= tempPos)
{
p->src = src - tempPos;
p->tempPos = 0;
break;
}
p->temp[tempPos] = src[0];
p->tempPos = tempPos + 1;
p->src = src + 1;
extra++;
}
}
}
PRF(printf("++++ ip = %8d tempPos = %8d src = %8d\n", p->ip, p->tempPos, p->srcLim - p->src));
Bcj2Enc_Encode_2(p);
if (p->state == BCJ2_ENC_STATE_ORIG)
{
const Byte *src = p->src;
unsigned rem = (unsigned)(p->srcLim - src);
unsigned i;
for (i = 0; i < rem; i++)
p->temp[i] = src[i];
p->tempPos = rem;
p->src = src + rem;
}
}

@ -0,0 +1,230 @@
/* Bra.c -- Converters for RISC code
2017-04-04 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#include "Bra.h"
SizeT ARM_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
Byte *p;
const Byte *lim;
size &= ~(size_t)3;
ip += 4;
p = data;
lim = data + size;
if (encoding)
for (;;)
{
for (;;)
{
if (p >= lim)
return p - data;
p += 4;
if (p[-1] == 0xEB)
break;
}
{
UInt32 v = GetUi32(p - 4);
v <<= 2;
v += ip + (UInt32)(p - data);
v >>= 2;
v &= 0x00FFFFFF;
v |= 0xEB000000;
SetUi32(p - 4, v);
}
}
for (;;)
{
for (;;)
{
if (p >= lim)
return p - data;
p += 4;
if (p[-1] == 0xEB)
break;
}
{
UInt32 v = GetUi32(p - 4);
v <<= 2;
v -= ip + (UInt32)(p - data);
v >>= 2;
v &= 0x00FFFFFF;
v |= 0xEB000000;
SetUi32(p - 4, v);
}
}
}
SizeT ARMT_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
Byte *p;
const Byte *lim;
size &= ~(size_t)1;
p = data;
lim = data + size - 4;
if (encoding)
for (;;)
{
UInt32 b1;
for (;;)
{
UInt32 b3;
if (p > lim)
return p - data;
b1 = p[1];
b3 = p[3];
p += 2;
b1 ^= 8;
if ((b3 & b1) >= 0xF8)
break;
}
{
UInt32 v =
((UInt32)b1 << 19)
+ (((UInt32)p[1] & 0x7) << 8)
+ (((UInt32)p[-2] << 11))
+ (p[0]);
p += 2;
{
UInt32 cur = (ip + (UInt32)(p - data)) >> 1;
v += cur;
}
p[-4] = (Byte)(v >> 11);
p[-3] = (Byte)(0xF0 | ((v >> 19) & 0x7));
p[-2] = (Byte)v;
p[-1] = (Byte)(0xF8 | (v >> 8));
}
}
for (;;)
{
UInt32 b1;
for (;;)
{
UInt32 b3;
if (p > lim)
return p - data;
b1 = p[1];
b3 = p[3];
p += 2;
b1 ^= 8;
if ((b3 & b1) >= 0xF8)
break;
}
{
UInt32 v =
((UInt32)b1 << 19)
+ (((UInt32)p[1] & 0x7) << 8)
+ (((UInt32)p[-2] << 11))
+ (p[0]);
p += 2;
{
UInt32 cur = (ip + (UInt32)(p - data)) >> 1;
v -= cur;
}
/*
SetUi16(p - 4, (UInt16)(((v >> 11) & 0x7FF) | 0xF000));
SetUi16(p - 2, (UInt16)(v | 0xF800));
*/
p[-4] = (Byte)(v >> 11);
p[-3] = (Byte)(0xF0 | ((v >> 19) & 0x7));
p[-2] = (Byte)v;
p[-1] = (Byte)(0xF8 | (v >> 8));
}
}
}
SizeT PPC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
Byte *p;
const Byte *lim;
size &= ~(size_t)3;
ip -= 4;
p = data;
lim = data + size;
for (;;)
{
for (;;)
{
if (p >= lim)
return p - data;
p += 4;
/* if ((v & 0xFC000003) == 0x48000001) */
if ((p[-4] & 0xFC) == 0x48 && (p[-1] & 3) == 1)
break;
}
{
UInt32 v = GetBe32(p - 4);
if (encoding)
v += ip + (UInt32)(p - data);
else
v -= ip + (UInt32)(p - data);
v &= 0x03FFFFFF;
v |= 0x48000000;
SetBe32(p - 4, v);
}
}
}
SizeT SPARC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
Byte *p;
const Byte *lim;
size &= ~(size_t)3;
ip -= 4;
p = data;
lim = data + size;
for (;;)
{
for (;;)
{
if (p >= lim)
return p - data;
/*
v = GetBe32(p);
p += 4;
m = v + ((UInt32)5 << 29);
m ^= (UInt32)7 << 29;
m += (UInt32)1 << 22;
if ((m & ((UInt32)0x1FF << 23)) == 0)
break;
*/
p += 4;
if ((p[-4] == 0x40 && (p[-3] & 0xC0) == 0) ||
(p[-4] == 0x7F && (p[-3] >= 0xC0)))
break;
}
{
UInt32 v = GetBe32(p - 4);
v <<= 2;
if (encoding)
v += ip + (UInt32)(p - data);
else
v -= ip + (UInt32)(p - data);
v &= 0x01FFFFFF;
v -= (UInt32)1 << 24;
v ^= 0xFF000000;
v >>= 2;
v |= 0x40000000;
SetBe32(p - 4, v);
}
}
}

@ -0,0 +1,64 @@
/* Bra.h -- Branch converters for executables
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __BRA_H
#define __BRA_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/*
These functions convert relative addresses to absolute addresses
in CALL instructions to increase the compression ratio.
In:
data - data buffer
size - size of data
ip - current virtual Instruction Pinter (IP) value
state - state variable for x86 converter
encoding - 0 (for decoding), 1 (for encoding)
Out:
state - state variable for x86 converter
Returns:
The number of processed bytes. If you call these functions with multiple calls,
you must start next call with first byte after block of processed bytes.
Type Endian Alignment LookAhead
x86 little 1 4
ARMT little 2 2
ARM little 4 0
PPC big 4 0
SPARC big 4 0
IA64 little 16 0
size must be >= Alignment + LookAhead, if it's not last block.
If (size < Alignment + LookAhead), converter returns 0.
Example:
UInt32 ip = 0;
for ()
{
; size must be >= Alignment + LookAhead, if it's not last block
SizeT processed = Convert(data, size, ip, 1);
data += processed;
size -= processed;
ip += processed;
}
*/
#define x86_Convert_Init(state) { state = 0; }
SizeT x86_Convert(Byte *data, SizeT size, UInt32 ip, UInt32 *state, int encoding);
SizeT ARM_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT ARMT_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT PPC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT SPARC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT IA64_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
EXTERN_C_END
#endif

@ -0,0 +1,82 @@
/* Bra86.c -- Converter for x86 code (BCJ)
2017-04-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Bra.h"
#define Test86MSByte(b) ((((b) + 1) & 0xFE) == 0)
SizeT x86_Convert(Byte *data, SizeT size, UInt32 ip, UInt32 *state, int encoding)
{
SizeT pos = 0;
UInt32 mask = *state & 7;
if (size < 5)
return 0;
size -= 4;
ip += 5;
for (;;)
{
Byte *p = data + pos;
const Byte *limit = data + size;
for (; p < limit; p++)
if ((*p & 0xFE) == 0xE8)
break;
{
SizeT d = (SizeT)(p - data - pos);
pos = (SizeT)(p - data);
if (p >= limit)
{
*state = (d > 2 ? 0 : mask >> (unsigned)d);
return pos;
}
if (d > 2)
mask = 0;
else
{
mask >>= (unsigned)d;
if (mask != 0 && (mask > 4 || mask == 3 || Test86MSByte(p[(size_t)(mask >> 1) + 1])))
{
mask = (mask >> 1) | 4;
pos++;
continue;
}
}
}
if (Test86MSByte(p[4]))
{
UInt32 v = ((UInt32)p[4] << 24) | ((UInt32)p[3] << 16) | ((UInt32)p[2] << 8) | ((UInt32)p[1]);
UInt32 cur = ip + (UInt32)pos;
pos += 5;
if (encoding)
v += cur;
else
v -= cur;
if (mask != 0)
{
unsigned sh = (mask & 6) << 2;
if (Test86MSByte((Byte)(v >> sh)))
{
v ^= (((UInt32)0x100 << sh) - 1);
if (encoding)
v += cur;
else
v -= cur;
}
mask = 0;
}
p[1] = (Byte)v;
p[2] = (Byte)(v >> 8);
p[3] = (Byte)(v >> 16);
p[4] = (Byte)(0 - ((v >> 24) & 1));
}
else
{
mask = (mask >> 1) | 4;
pos++;
}
}
}

@ -0,0 +1,53 @@
/* BraIA64.c -- Converter for IA-64 code
2017-01-26 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#include "Bra.h"
SizeT IA64_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 16)
return 0;
size -= 16;
i = 0;
do
{
unsigned m = ((UInt32)0x334B0000 >> (data[i] & 0x1E)) & 3;
if (m)
{
m++;
do
{
Byte *p = data + (i + (size_t)m * 5 - 8);
if (((p[3] >> m) & 15) == 5
&& (((p[-1] | ((UInt32)p[0] << 8)) >> m) & 0x70) == 0)
{
unsigned raw = GetUi32(p);
unsigned v = raw >> m;
v = (v & 0xFFFFF) | ((v & (1 << 23)) >> 3);
v <<= 4;
if (encoding)
v += ip + (UInt32)i;
else
v -= ip + (UInt32)i;
v >>= 4;
v &= 0x1FFFFF;
v += 0x700000;
v &= 0x8FFFFF;
raw &= ~((UInt32)0x8FFFFF << m);
raw |= (v << m);
SetUi32(p, raw);
}
}
while (++m <= 4);
}
i += 16;
}
while (i <= size);
return i;
}

@ -10,7 +10,7 @@ NL_DEFAULT_PROPS(nel_sevenzip "NeL, 3rd Party: Seven Zip")
NL_ADD_RUNTIME_FLAGS(nel_sevenzip)
NL_ADD_LIB_SUFFIX(nel_sevenzip)
ADD_DEFINITIONS(-D_SZ_ONE_DIRECTORY)
ADD_DEFINITIONS(-D_7ZIP_ST)
IF((WITH_INSTALL_LIBRARIES AND WITH_STATIC) OR NOT WITH_STATIC)
INSTALL(TARGETS nel_sevenzip LIBRARY DESTINATION ${NL_LIB_PREFIX} ARCHIVE DESTINATION ${NL_LIB_PREFIX} COMPONENT libraries)

@ -0,0 +1,33 @@
/* Compiler.h
2017-04-03 : Igor Pavlov : Public domain */
#ifndef __7Z_COMPILER_H
#define __7Z_COMPILER_H
#ifdef _MSC_VER
#ifdef UNDER_CE
#define RPC_NO_WINDOWS_H
/* #pragma warning(disable : 4115) // '_RPC_ASYNC_STATE' : named type definition in parentheses */
#pragma warning(disable : 4201) // nonstandard extension used : nameless struct/union
#pragma warning(disable : 4214) // nonstandard extension used : bit field types other than int
#endif
#if _MSC_VER >= 1300
#pragma warning(disable : 4996) // This function or variable may be unsafe
#else
#pragma warning(disable : 4511) // copy constructor could not be generated
#pragma warning(disable : 4512) // assignment operator could not be generated
#pragma warning(disable : 4514) // unreferenced inline function has been removed
#pragma warning(disable : 4702) // unreachable code
#pragma warning(disable : 4710) // not inlined
#pragma warning(disable : 4714) // function marked as __forceinline not inlined
#pragma warning(disable : 4786) // identifier was truncated to '255' characters in the debug information
#endif
#endif
#define UNUSED_VAR(x) (void)x;
/* #define UNUSED_VAR(x) x=x; */
#endif

@ -0,0 +1,218 @@
/* CpuArch.c -- CPU specific code
2018-02-18: Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#ifdef MY_CPU_X86_OR_AMD64
#if (defined(_MSC_VER) && !defined(MY_CPU_AMD64)) || defined(__GNUC__)
#define USE_ASM
#endif
#if !defined(USE_ASM) && _MSC_VER >= 1500
#include <intrin.h>
#endif
#if defined(USE_ASM) && !defined(MY_CPU_AMD64)
static UInt32 CheckFlag(UInt32 flag)
{
#ifdef _MSC_VER
__asm pushfd;
__asm pop EAX;
__asm mov EDX, EAX;
__asm xor EAX, flag;
__asm push EAX;
__asm popfd;
__asm pushfd;
__asm pop EAX;
__asm xor EAX, EDX;
__asm push EDX;
__asm popfd;
__asm and flag, EAX;
#else
__asm__ __volatile__ (
"pushf\n\t"
"pop %%EAX\n\t"
"movl %%EAX,%%EDX\n\t"
"xorl %0,%%EAX\n\t"
"push %%EAX\n\t"
"popf\n\t"
"pushf\n\t"
"pop %%EAX\n\t"
"xorl %%EDX,%%EAX\n\t"
"push %%EDX\n\t"
"popf\n\t"
"andl %%EAX, %0\n\t":
"=c" (flag) : "c" (flag) :
"%eax", "%edx");
#endif
return flag;
}
#define CHECK_CPUID_IS_SUPPORTED if (CheckFlag(1 << 18) == 0 || CheckFlag(1 << 21) == 0) return False;
#else
#define CHECK_CPUID_IS_SUPPORTED
#endif
void MyCPUID(UInt32 function, UInt32 *a, UInt32 *b, UInt32 *c, UInt32 *d)
{
#ifdef USE_ASM
#ifdef _MSC_VER
UInt32 a2, b2, c2, d2;
__asm xor EBX, EBX;
__asm xor ECX, ECX;
__asm xor EDX, EDX;
__asm mov EAX, function;
__asm cpuid;
__asm mov a2, EAX;
__asm mov b2, EBX;
__asm mov c2, ECX;
__asm mov d2, EDX;
*a = a2;
*b = b2;
*c = c2;
*d = d2;
#else
__asm__ __volatile__ (
#if defined(MY_CPU_AMD64) && defined(__PIC__)
"mov %%rbx, %%rdi;"
"cpuid;"
"xchg %%rbx, %%rdi;"
: "=a" (*a) ,
"=D" (*b) ,
#elif defined(MY_CPU_X86) && defined(__PIC__)
"mov %%ebx, %%edi;"
"cpuid;"
"xchgl %%ebx, %%edi;"
: "=a" (*a) ,
"=D" (*b) ,
#else
"cpuid"
: "=a" (*a) ,
"=b" (*b) ,
#endif
"=c" (*c) ,
"=d" (*d)
: "0" (function)) ;
#endif
#else
int CPUInfo[4];
__cpuid(CPUInfo, function);
*a = CPUInfo[0];
*b = CPUInfo[1];
*c = CPUInfo[2];
*d = CPUInfo[3];
#endif
}
BoolInt x86cpuid_CheckAndRead(Cx86cpuid *p)
{
CHECK_CPUID_IS_SUPPORTED
MyCPUID(0, &p->maxFunc, &p->vendor[0], &p->vendor[2], &p->vendor[1]);
MyCPUID(1, &p->ver, &p->b, &p->c, &p->d);
return True;
}
static const UInt32 kVendors[][3] =
{
{ 0x756E6547, 0x49656E69, 0x6C65746E},
{ 0x68747541, 0x69746E65, 0x444D4163},
{ 0x746E6543, 0x48727561, 0x736C7561}
};
int x86cpuid_GetFirm(const Cx86cpuid *p)
{
unsigned i;
for (i = 0; i < sizeof(kVendors) / sizeof(kVendors[i]); i++)
{
const UInt32 *v = kVendors[i];
if (v[0] == p->vendor[0] &&
v[1] == p->vendor[1] &&
v[2] == p->vendor[2])
return (int)i;
}
return -1;
}
BoolInt CPU_Is_InOrder()
{
Cx86cpuid p;
int firm;
UInt32 family, model;
if (!x86cpuid_CheckAndRead(&p))
return True;
family = x86cpuid_GetFamily(p.ver);
model = x86cpuid_GetModel(p.ver);
firm = x86cpuid_GetFirm(&p);
switch (firm)
{
case CPU_FIRM_INTEL: return (family < 6 || (family == 6 && (
/* In-Order Atom CPU */
model == 0x1C /* 45 nm, N4xx, D4xx, N5xx, D5xx, 230, 330 */
|| model == 0x26 /* 45 nm, Z6xx */
|| model == 0x27 /* 32 nm, Z2460 */
|| model == 0x35 /* 32 nm, Z2760 */
|| model == 0x36 /* 32 nm, N2xxx, D2xxx */
)));
case CPU_FIRM_AMD: return (family < 5 || (family == 5 && (model < 6 || model == 0xA)));
case CPU_FIRM_VIA: return (family < 6 || (family == 6 && model < 0xF));
}
return True;
}
#if !defined(MY_CPU_AMD64) && defined(_WIN32)
#include <windows.h>
static BoolInt CPU_Sys_Is_SSE_Supported()
{
OSVERSIONINFO vi;
vi.dwOSVersionInfoSize = sizeof(vi);
if (!GetVersionEx(&vi))
return False;
return (vi.dwMajorVersion >= 5);
}
#define CHECK_SYS_SSE_SUPPORT if (!CPU_Sys_Is_SSE_Supported()) return False;
#else
#define CHECK_SYS_SSE_SUPPORT
#endif
BoolInt CPU_Is_Aes_Supported()
{
Cx86cpuid p;
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_CheckAndRead(&p))
return False;
return (p.c >> 25) & 1;
}
BoolInt CPU_IsSupported_PageGB()
{
Cx86cpuid cpuid;
if (!x86cpuid_CheckAndRead(&cpuid))
return False;
{
UInt32 d[4] = { 0 };
MyCPUID(0x80000000, &d[0], &d[1], &d[2], &d[3]);
if (d[0] < 0x80000001)
return False;
}
{
UInt32 d[4] = { 0 };
MyCPUID(0x80000001, &d[0], &d[1], &d[2], &d[3]);
return (d[3] >> 26) & 1;
}
}
#endif

@ -0,0 +1,336 @@
/* CpuArch.h -- CPU specific code
2018-02-18 : Igor Pavlov : Public domain */
#ifndef __CPU_ARCH_H
#define __CPU_ARCH_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/*
MY_CPU_LE means that CPU is LITTLE ENDIAN.
MY_CPU_BE means that CPU is BIG ENDIAN.
If MY_CPU_LE and MY_CPU_BE are not defined, we don't know about ENDIANNESS of platform.
MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned memory accesses.
*/
#if defined(_M_X64) \
|| defined(_M_AMD64) \
|| defined(__x86_64__) \
|| defined(__AMD64__) \
|| defined(__amd64__)
#define MY_CPU_AMD64
#ifdef __ILP32__
#define MY_CPU_NAME "x32"
#else
#define MY_CPU_NAME "x64"
#endif
#define MY_CPU_64BIT
#endif
#if defined(_M_IX86) \
|| defined(__i386__)
#define MY_CPU_X86
#define MY_CPU_NAME "x86"
#define MY_CPU_32BIT
#endif
#if defined(_M_ARM64) \
|| defined(__AARCH64EL__) \
|| defined(__AARCH64EB__) \
|| defined(__aarch64__)
#define MY_CPU_ARM64
#define MY_CPU_NAME "arm64"
#define MY_CPU_64BIT
#endif
#if defined(_M_ARM) \
|| defined(_M_ARM_NT) \
|| defined(_M_ARMT) \
|| defined(__arm__) \
|| defined(__thumb__) \
|| defined(__ARMEL__) \
|| defined(__ARMEB__) \
|| defined(__THUMBEL__) \
|| defined(__THUMBEB__)
#define MY_CPU_ARM
#define MY_CPU_NAME "arm"
#define MY_CPU_32BIT
#endif
#if defined(_M_IA64) \
|| defined(__ia64__)
#define MY_CPU_IA64
#define MY_CPU_NAME "ia64"
#define MY_CPU_64BIT
#endif
#if defined(__mips64) \
|| defined(__mips64__) \
|| (defined(__mips) && (__mips == 64 || __mips == 4 || __mips == 3))
#define MY_CPU_NAME "mips64"
#define MY_CPU_64BIT
#elif defined(__mips__)
#define MY_CPU_NAME "mips"
/* #define MY_CPU_32BIT */
#endif
#if defined(__ppc64__) \
|| defined(__powerpc64__)
#ifdef __ILP32__
#define MY_CPU_NAME "ppc64-32"
#else
#define MY_CPU_NAME "ppc64"
#endif
#define MY_CPU_64BIT
#elif defined(__ppc__) \
|| defined(__powerpc__)
#define MY_CPU_NAME "ppc"
#define MY_CPU_32BIT
#endif
#if defined(__sparc64__)
#define MY_CPU_NAME "sparc64"
#define MY_CPU_64BIT
#elif defined(__sparc__)
#define MY_CPU_NAME "sparc"
/* #define MY_CPU_32BIT */
#endif
#if defined(MY_CPU_X86) || defined(MY_CPU_AMD64)
#define MY_CPU_X86_OR_AMD64
#endif
#ifdef _WIN32
#ifdef MY_CPU_ARM
#define MY_CPU_ARM_LE
#endif
#ifdef MY_CPU_ARM64
#define MY_CPU_ARM64_LE
#endif
#ifdef _M_IA64
#define MY_CPU_IA64_LE
#endif
#endif
#if defined(MY_CPU_X86_OR_AMD64) \
|| defined(MY_CPU_ARM_LE) \
|| defined(MY_CPU_ARM64_LE) \
|| defined(MY_CPU_IA64_LE) \
|| defined(__LITTLE_ENDIAN__) \
|| defined(__ARMEL__) \
|| defined(__THUMBEL__) \
|| defined(__AARCH64EL__) \
|| defined(__MIPSEL__) \
|| defined(__MIPSEL) \
|| defined(_MIPSEL) \
|| defined(__BFIN__) \
|| (defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
#define MY_CPU_LE
#endif
#if defined(__BIG_ENDIAN__) \
|| defined(__ARMEB__) \
|| defined(__THUMBEB__) \
|| defined(__AARCH64EB__) \
|| defined(__MIPSEB__) \
|| defined(__MIPSEB) \
|| defined(_MIPSEB) \
|| defined(__m68k__) \
|| defined(__s390__) \
|| defined(__s390x__) \
|| defined(__zarch__) \
|| (defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))
#define MY_CPU_BE
#endif
#if defined(MY_CPU_LE) && defined(MY_CPU_BE)
#error Stop_Compiling_Bad_Endian
#endif
#if defined(MY_CPU_32BIT) && defined(MY_CPU_64BIT)
#error Stop_Compiling_Bad_32_64_BIT
#endif
#ifndef MY_CPU_NAME
#ifdef MY_CPU_LE
#define MY_CPU_NAME "LE"
#elif defined(MY_CPU_BE)
#define MY_CPU_NAME "BE"
#else
/*
#define MY_CPU_NAME ""
*/
#endif
#endif
#ifdef MY_CPU_LE
#if defined(MY_CPU_X86_OR_AMD64) \
|| defined(MY_CPU_ARM64) \
|| defined(__ARM_FEATURE_UNALIGNED)
#define MY_CPU_LE_UNALIGN
#endif
#endif
#ifdef MY_CPU_LE_UNALIGN
#define GetUi16(p) (*(const UInt16 *)(const void *)(p))
#define GetUi32(p) (*(const UInt32 *)(const void *)(p))
#define GetUi64(p) (*(const UInt64 *)(const void *)(p))
#define SetUi16(p, v) { *(UInt16 *)(p) = (v); }
#define SetUi32(p, v) { *(UInt32 *)(p) = (v); }
#define SetUi64(p, v) { *(UInt64 *)(p) = (v); }
#else
#define GetUi16(p) ( (UInt16) ( \
((const Byte *)(p))[0] | \
((UInt16)((const Byte *)(p))[1] << 8) ))
#define GetUi32(p) ( \
((const Byte *)(p))[0] | \
((UInt32)((const Byte *)(p))[1] << 8) | \
((UInt32)((const Byte *)(p))[2] << 16) | \
((UInt32)((const Byte *)(p))[3] << 24))
#define GetUi64(p) (GetUi32(p) | ((UInt64)GetUi32(((const Byte *)(p)) + 4) << 32))
#define SetUi16(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)_vvv_; \
_ppp_[1] = (Byte)(_vvv_ >> 8); }
#define SetUi32(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)_vvv_; \
_ppp_[1] = (Byte)(_vvv_ >> 8); \
_ppp_[2] = (Byte)(_vvv_ >> 16); \
_ppp_[3] = (Byte)(_vvv_ >> 24); }
#define SetUi64(p, v) { Byte *_ppp2_ = (Byte *)(p); UInt64 _vvv2_ = (v); \
SetUi32(_ppp2_ , (UInt32)_vvv2_); \
SetUi32(_ppp2_ + 4, (UInt32)(_vvv2_ >> 32)); }
#endif
#ifdef __has_builtin
#define MY__has_builtin(x) __has_builtin(x)
#else
#define MY__has_builtin(x) 0
#endif
#if defined(MY_CPU_LE_UNALIGN) && /* defined(_WIN64) && */ (_MSC_VER >= 1300)
/* Note: we use bswap instruction, that is unsupported in 386 cpu */
#include <stdlib.h>
#pragma intrinsic(_byteswap_ushort)
#pragma intrinsic(_byteswap_ulong)
#pragma intrinsic(_byteswap_uint64)
/* #define GetBe16(p) _byteswap_ushort(*(const UInt16 *)(const Byte *)(p)) */
#define GetBe32(p) _byteswap_ulong(*(const UInt32 *)(const Byte *)(p))
#define GetBe64(p) _byteswap_uint64(*(const UInt64 *)(const Byte *)(p))
#define SetBe32(p, v) (*(UInt32 *)(void *)(p)) = _byteswap_ulong(v)
#elif defined(MY_CPU_LE_UNALIGN) && ( \
(defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))) \
|| (defined(__clang__) && MY__has_builtin(__builtin_bswap16)) )
/* #define GetBe16(p) __builtin_bswap16(*(const UInt16 *)(const Byte *)(p)) */
#define GetBe32(p) __builtin_bswap32(*(const UInt32 *)(const Byte *)(p))
#define GetBe64(p) __builtin_bswap64(*(const UInt64 *)(const Byte *)(p))
#define SetBe32(p, v) (*(UInt32 *)(void *)(p)) = __builtin_bswap32(v)
#else
#define GetBe32(p) ( \
((UInt32)((const Byte *)(p))[0] << 24) | \
((UInt32)((const Byte *)(p))[1] << 16) | \
((UInt32)((const Byte *)(p))[2] << 8) | \
((const Byte *)(p))[3] )
#define GetBe64(p) (((UInt64)GetBe32(p) << 32) | GetBe32(((const Byte *)(p)) + 4))
#define SetBe32(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)(_vvv_ >> 24); \
_ppp_[1] = (Byte)(_vvv_ >> 16); \
_ppp_[2] = (Byte)(_vvv_ >> 8); \
_ppp_[3] = (Byte)_vvv_; }
#endif
#ifndef GetBe16
#define GetBe16(p) ( (UInt16) ( \
((UInt16)((const Byte *)(p))[0] << 8) | \
((const Byte *)(p))[1] ))
#endif
#ifdef MY_CPU_X86_OR_AMD64
typedef struct
{
UInt32 maxFunc;
UInt32 vendor[3];
UInt32 ver;
UInt32 b;
UInt32 c;
UInt32 d;
} Cx86cpuid;
enum
{
CPU_FIRM_INTEL,
CPU_FIRM_AMD,
CPU_FIRM_VIA
};
void MyCPUID(UInt32 function, UInt32 *a, UInt32 *b, UInt32 *c, UInt32 *d);
BoolInt x86cpuid_CheckAndRead(Cx86cpuid *p);
int x86cpuid_GetFirm(const Cx86cpuid *p);
#define x86cpuid_GetFamily(ver) (((ver >> 16) & 0xFF0) | ((ver >> 8) & 0xF))
#define x86cpuid_GetModel(ver) (((ver >> 12) & 0xF0) | ((ver >> 4) & 0xF))
#define x86cpuid_GetStepping(ver) (ver & 0xF)
BoolInt CPU_Is_InOrder();
BoolInt CPU_Is_Aes_Supported();
BoolInt CPU_IsSupported_PageGB();
#endif
EXTERN_C_END
#endif

@ -0,0 +1,64 @@
/* Delta.c -- Delta converter
2009-05-26 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Delta.h"
void Delta_Init(Byte *state)
{
unsigned i;
for (i = 0; i < DELTA_STATE_SIZE; i++)
state[i] = 0;
}
static void MyMemCpy(Byte *dest, const Byte *src, unsigned size)
{
unsigned i;
for (i = 0; i < size; i++)
dest[i] = src[i];
}
void Delta_Encode(Byte *state, unsigned delta, Byte *data, SizeT size)
{
Byte buf[DELTA_STATE_SIZE];
unsigned j = 0;
MyMemCpy(buf, state, delta);
{
SizeT i;
for (i = 0; i < size;)
{
for (j = 0; j < delta && i < size; i++, j++)
{
Byte b = data[i];
data[i] = (Byte)(b - buf[j]);
buf[j] = b;
}
}
}
if (j == delta)
j = 0;
MyMemCpy(state, buf + j, delta - j);
MyMemCpy(state + delta - j, buf, j);
}
void Delta_Decode(Byte *state, unsigned delta, Byte *data, SizeT size)
{
Byte buf[DELTA_STATE_SIZE];
unsigned j = 0;
MyMemCpy(buf, state, delta);
{
SizeT i;
for (i = 0; i < size;)
{
for (j = 0; j < delta && i < size; i++, j++)
{
buf[j] = data[i] = (Byte)(buf[j] + data[i]);
}
}
}
if (j == delta)
j = 0;
MyMemCpy(state, buf + j, delta - j);
MyMemCpy(state + delta - j, buf, j);
}

@ -0,0 +1,19 @@
/* Delta.h -- Delta converter
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __DELTA_H
#define __DELTA_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define DELTA_STATE_SIZE 256
void Delta_Init(Byte *state);
void Delta_Encode(Byte *state, unsigned delta, Byte *data, SizeT size);
void Delta_Decode(Byte *state, unsigned delta, Byte *data, SizeT size);
EXTERN_C_END
#endif

@ -0,0 +1,108 @@
/* DllSecur.c -- DLL loading security
2018-02-21 : Igor Pavlov : Public domain */
#include "Precomp.h"
#ifdef _WIN32
#include <windows.h>
#include "DllSecur.h"
#ifndef UNDER_CE
typedef BOOL (WINAPI *Func_SetDefaultDllDirectories)(DWORD DirectoryFlags);
#define MY_LOAD_LIBRARY_SEARCH_USER_DIRS 0x400
#define MY_LOAD_LIBRARY_SEARCH_SYSTEM32 0x800
static const char * const g_Dlls =
#ifndef _CONSOLE
"UXTHEME\0"
#endif
"USERENV\0"
"SETUPAPI\0"
"APPHELP\0"
"PROPSYS\0"
"DWMAPI\0"
"CRYPTBASE\0"
"OLEACC\0"
"CLBCATQ\0"
"VERSION\0"
;
#endif
void My_SetDefaultDllDirectories()
{
#ifndef UNDER_CE
OSVERSIONINFO vi;
vi.dwOSVersionInfoSize = sizeof(vi);
GetVersionEx(&vi);
if (!GetVersionEx(&vi) || vi.dwMajorVersion != 6 || vi.dwMinorVersion != 0)
{
Func_SetDefaultDllDirectories setDllDirs = (Func_SetDefaultDllDirectories)
GetProcAddress(GetModuleHandle(TEXT("kernel32.dll")), "SetDefaultDllDirectories");
if (setDllDirs)
if (setDllDirs(MY_LOAD_LIBRARY_SEARCH_SYSTEM32 | MY_LOAD_LIBRARY_SEARCH_USER_DIRS))
return;
}
#endif
}
void LoadSecurityDlls()
{
#ifndef UNDER_CE
wchar_t buf[MAX_PATH + 100];
{
// at Vista (ver 6.0) : CoCreateInstance(CLSID_ShellLink, ...) doesn't work after SetDefaultDllDirectories() : Check it ???
OSVERSIONINFO vi;
vi.dwOSVersionInfoSize = sizeof(vi);
if (!GetVersionEx(&vi) || vi.dwMajorVersion != 6 || vi.dwMinorVersion != 0)
{
Func_SetDefaultDllDirectories setDllDirs = (Func_SetDefaultDllDirectories)
GetProcAddress(GetModuleHandle(TEXT("kernel32.dll")), "SetDefaultDllDirectories");
if (setDllDirs)
if (setDllDirs(MY_LOAD_LIBRARY_SEARCH_SYSTEM32 | MY_LOAD_LIBRARY_SEARCH_USER_DIRS))
return;
}
}
{
unsigned len = GetSystemDirectoryW(buf, MAX_PATH + 2);
if (len == 0 || len > MAX_PATH)
return;
}
{
const char *dll;
unsigned pos = (unsigned)lstrlenW(buf);
if (buf[pos - 1] != '\\')
buf[pos++] = '\\';
for (dll = g_Dlls; dll[0] != 0;)
{
unsigned k = 0;
for (;;)
{
char c = *dll++;
buf[pos + k] = (Byte)c;
k++;
if (c == 0)
break;
}
lstrcatW(buf, L".dll");
LoadLibraryExW(buf, NULL, LOAD_WITH_ALTERED_SEARCH_PATH);
}
}
#endif
}
#endif

@ -0,0 +1,20 @@
/* DllSecur.h -- DLL loading for security
2018-02-19 : Igor Pavlov : Public domain */
#ifndef __DLL_SECUR_H
#define __DLL_SECUR_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#ifdef _WIN32
void My_SetDefaultDllDirectories();
void LoadSecurityDlls();
#endif
EXTERN_C_END
#endif

File diff suppressed because it is too large Load Diff

@ -0,0 +1,121 @@
/* LzFind.h -- Match finder for LZ algorithms
2017-06-10 : Igor Pavlov : Public domain */
#ifndef __LZ_FIND_H
#define __LZ_FIND_H
#include "7zTypes.h"
EXTERN_C_BEGIN
typedef UInt32 CLzRef;
typedef struct _CMatchFinder
{
Byte *buffer;
UInt32 pos;
UInt32 posLimit;
UInt32 streamPos;
UInt32 lenLimit;
UInt32 cyclicBufferPos;
UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */
Byte streamEndWasReached;
Byte btMode;
Byte bigHash;
Byte directInput;
UInt32 matchMaxLen;
CLzRef *hash;
CLzRef *son;
UInt32 hashMask;
UInt32 cutValue;
Byte *bufferBase;
ISeqInStream *stream;
UInt32 blockSize;
UInt32 keepSizeBefore;
UInt32 keepSizeAfter;
UInt32 numHashBytes;
size_t directInputRem;
UInt32 historySize;
UInt32 fixedHashSize;
UInt32 hashSizeSum;
SRes result;
UInt32 crc[256];
size_t numRefs;
UInt64 expectedDataSize;
} CMatchFinder;
#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((p)->buffer)
#define Inline_MatchFinder_GetNumAvailableBytes(p) ((p)->streamPos - (p)->pos)
#define Inline_MatchFinder_IsFinishedOK(p) \
((p)->streamEndWasReached \
&& (p)->streamPos == (p)->pos \
&& (!(p)->directInput || (p)->directInputRem == 0))
int MatchFinder_NeedMove(CMatchFinder *p);
Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p);
void MatchFinder_MoveBlock(CMatchFinder *p);
void MatchFinder_ReadIfRequired(CMatchFinder *p);
void MatchFinder_Construct(CMatchFinder *p);
/* Conditions:
historySize <= 3 GB
keepAddBufferBefore + matchMaxLen + keepAddBufferAfter < 511MB
*/
int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
ISzAllocPtr alloc);
void MatchFinder_Free(CMatchFinder *p, ISzAllocPtr alloc);
void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, size_t numItems);
void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue);
UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *buffer, CLzRef *son,
UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
UInt32 *distances, UInt32 maxLen);
/*
Conditions:
Mf_GetNumAvailableBytes_Func must be called before each Mf_GetMatchLen_Func.
Mf_GetPointerToCurrentPos_Func's result must be used only before any other function
*/
typedef void (*Mf_Init_Func)(void *object);
typedef UInt32 (*Mf_GetNumAvailableBytes_Func)(void *object);
typedef const Byte * (*Mf_GetPointerToCurrentPos_Func)(void *object);
typedef UInt32 (*Mf_GetMatches_Func)(void *object, UInt32 *distances);
typedef void (*Mf_Skip_Func)(void *object, UInt32);
typedef struct _IMatchFinder
{
Mf_Init_Func Init;
Mf_GetNumAvailableBytes_Func GetNumAvailableBytes;
Mf_GetPointerToCurrentPos_Func GetPointerToCurrentPos;
Mf_GetMatches_Func GetMatches;
Mf_Skip_Func Skip;
} IMatchFinder;
void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable);
void MatchFinder_Init_LowHash(CMatchFinder *p);
void MatchFinder_Init_HighHash(CMatchFinder *p);
void MatchFinder_Init_3(CMatchFinder *p, int readData);
void MatchFinder_Init(CMatchFinder *p);
UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
EXTERN_C_END
#endif

@ -0,0 +1,57 @@
/* LzHash.h -- HASH functions for LZ algorithms
2015-04-12 : Igor Pavlov : Public domain */
#ifndef __LZ_HASH_H
#define __LZ_HASH_H
#define kHash2Size (1 << 10)
#define kHash3Size (1 << 16)
#define kHash4Size (1 << 20)
#define kFix3HashSize (kHash2Size)
#define kFix4HashSize (kHash2Size + kHash3Size)
#define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size)
#define HASH2_CALC hv = cur[0] | ((UInt32)cur[1] << 8);
#define HASH3_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
hv = (temp ^ ((UInt32)cur[2] << 8)) & p->hashMask; }
#define HASH4_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
temp ^= ((UInt32)cur[2] << 8); \
h3 = temp & (kHash3Size - 1); \
hv = (temp ^ (p->crc[cur[3]] << 5)) & p->hashMask; }
#define HASH5_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
temp ^= ((UInt32)cur[2] << 8); \
h3 = temp & (kHash3Size - 1); \
temp ^= (p->crc[cur[3]] << 5); \
h4 = temp & (kHash4Size - 1); \
hv = (temp ^ (p->crc[cur[4]] << 3)) & p->hashMask; }
/* #define HASH_ZIP_CALC hv = ((cur[0] | ((UInt32)cur[1] << 8)) ^ p->crc[cur[2]]) & 0xFFFF; */
#define HASH_ZIP_CALC hv = ((cur[2] | ((UInt32)cur[0] << 8)) ^ p->crc[cur[1]]) & 0xFFFF;
#define MT_HASH2_CALC \
h2 = (p->crc[cur[0]] ^ cur[1]) & (kHash2Size - 1);
#define MT_HASH3_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
h3 = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
#define MT_HASH4_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
temp ^= ((UInt32)cur[2] << 8); \
h3 = temp & (kHash3Size - 1); \
h4 = (temp ^ (p->crc[cur[3]] << 5)) & (kHash4Size - 1); }
#endif

@ -0,0 +1,488 @@
/* Lzma2Dec.c -- LZMA2 Decoder
2019-02-02 : Igor Pavlov : Public domain */
/* #define SHOW_DEBUG_INFO */
#include "Precomp.h"
#ifdef SHOW_DEBUG_INFO
#include <stdio.h>
#endif
#include <string.h>
#include "Lzma2Dec.h"
/*
00000000 - End of data
00000001 U U - Uncompressed, reset dic, need reset state and set new prop
00000010 U U - Uncompressed, no reset
100uuuuu U U P P - LZMA, no reset
101uuuuu U U P P - LZMA, reset state
110uuuuu U U P P S - LZMA, reset state + set new prop
111uuuuu U U P P S - LZMA, reset state + set new prop, reset dic
u, U - Unpack Size
P - Pack Size
S - Props
*/
#define LZMA2_CONTROL_COPY_RESET_DIC 1
#define LZMA2_IS_UNCOMPRESSED_STATE(p) (((p)->control & (1 << 7)) == 0)
#define LZMA2_LCLP_MAX 4
#define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p) & 1)) << ((p) / 2 + 11))
#ifdef SHOW_DEBUG_INFO
#define PRF(x) x
#else
#define PRF(x)
#endif
typedef enum
{
LZMA2_STATE_CONTROL,
LZMA2_STATE_UNPACK0,
LZMA2_STATE_UNPACK1,
LZMA2_STATE_PACK0,
LZMA2_STATE_PACK1,
LZMA2_STATE_PROP,
LZMA2_STATE_DATA,
LZMA2_STATE_DATA_CONT,
LZMA2_STATE_FINISHED,
LZMA2_STATE_ERROR
} ELzma2State;
static SRes Lzma2Dec_GetOldProps(Byte prop, Byte *props)
{
UInt32 dicSize;
if (prop > 40)
return SZ_ERROR_UNSUPPORTED;
dicSize = (prop == 40) ? 0xFFFFFFFF : LZMA2_DIC_SIZE_FROM_PROP(prop);
props[0] = (Byte)LZMA2_LCLP_MAX;
props[1] = (Byte)(dicSize);
props[2] = (Byte)(dicSize >> 8);
props[3] = (Byte)(dicSize >> 16);
props[4] = (Byte)(dicSize >> 24);
return SZ_OK;
}
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
return LzmaDec_AllocateProbs(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
return LzmaDec_Allocate(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
void Lzma2Dec_Init(CLzma2Dec *p)
{
p->state = LZMA2_STATE_CONTROL;
p->needInitLevel = 0xE0;
p->isExtraMode = False;
p->unpackSize = 0;
// p->decoder.dicPos = 0; // we can use it instead of full init
LzmaDec_Init(&p->decoder);
}
static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
{
switch (p->state)
{
case LZMA2_STATE_CONTROL:
p->isExtraMode = False;
p->control = b;
PRF(printf("\n %8X", (unsigned)p->decoder.dicPos));
PRF(printf(" %02X", (unsigned)b));
if (b == 0)
return LZMA2_STATE_FINISHED;
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (b == LZMA2_CONTROL_COPY_RESET_DIC)
p->needInitLevel = 0xC0;
else if (b > 2 || p->needInitLevel == 0xE0)
return LZMA2_STATE_ERROR;
}
else
{
if (b < p->needInitLevel)
return LZMA2_STATE_ERROR;
p->needInitLevel = 0;
p->unpackSize = (UInt32)(b & 0x1F) << 16;
}
return LZMA2_STATE_UNPACK0;
case LZMA2_STATE_UNPACK0:
p->unpackSize |= (UInt32)b << 8;
return LZMA2_STATE_UNPACK1;
case LZMA2_STATE_UNPACK1:
p->unpackSize |= (UInt32)b;
p->unpackSize++;
PRF(printf(" %7u", (unsigned)p->unpackSize));
return LZMA2_IS_UNCOMPRESSED_STATE(p) ? LZMA2_STATE_DATA : LZMA2_STATE_PACK0;
case LZMA2_STATE_PACK0:
p->packSize = (UInt32)b << 8;
return LZMA2_STATE_PACK1;
case LZMA2_STATE_PACK1:
p->packSize |= (UInt32)b;
p->packSize++;
// if (p->packSize < 5) return LZMA2_STATE_ERROR;
PRF(printf(" %5u", (unsigned)p->packSize));
return (p->control & 0x40) ? LZMA2_STATE_PROP : LZMA2_STATE_DATA;
case LZMA2_STATE_PROP:
{
unsigned lc, lp;
if (b >= (9 * 5 * 5))
return LZMA2_STATE_ERROR;
lc = b % 9;
b /= 9;
p->decoder.prop.pb = (Byte)(b / 5);
lp = b % 5;
if (lc + lp > LZMA2_LCLP_MAX)
return LZMA2_STATE_ERROR;
p->decoder.prop.lc = (Byte)lc;
p->decoder.prop.lp = (Byte)lp;
return LZMA2_STATE_DATA;
}
}
return LZMA2_STATE_ERROR;
}
static void LzmaDec_UpdateWithUncompressed(CLzmaDec *p, const Byte *src, SizeT size)
{
memcpy(p->dic + p->dicPos, src, size);
p->dicPos += size;
if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= size)
p->checkDicSize = p->prop.dicSize;
p->processedPos += (UInt32)size;
}
void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState);
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT inSize = *srcLen;
*srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
while (p->state != LZMA2_STATE_ERROR)
{
SizeT dicPos;
if (p->state == LZMA2_STATE_FINISHED)
{
*status = LZMA_STATUS_FINISHED_WITH_MARK;
return SZ_OK;
}
dicPos = p->decoder.dicPos;
if (dicPos == dicLimit && finishMode == LZMA_FINISH_ANY)
{
*status = LZMA_STATUS_NOT_FINISHED;
return SZ_OK;
}
if (p->state != LZMA2_STATE_DATA && p->state != LZMA2_STATE_DATA_CONT)
{
if (*srcLen == inSize)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
(*srcLen)++;
p->state = Lzma2Dec_UpdateState(p, *src++);
if (dicPos == dicLimit && p->state != LZMA2_STATE_FINISHED)
break;
continue;
}
{
SizeT inCur = inSize - *srcLen;
SizeT outCur = dicLimit - dicPos;
ELzmaFinishMode curFinishMode = LZMA_FINISH_ANY;
if (outCur >= p->unpackSize)
{
outCur = (SizeT)p->unpackSize;
curFinishMode = LZMA_FINISH_END;
}
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (inCur == 0)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
if (p->state == LZMA2_STATE_DATA)
{
BoolInt initDic = (p->control == LZMA2_CONTROL_COPY_RESET_DIC);
LzmaDec_InitDicAndState(&p->decoder, initDic, False);
}
if (inCur > outCur)
inCur = outCur;
if (inCur == 0)
break;
LzmaDec_UpdateWithUncompressed(&p->decoder, src, inCur);
src += inCur;
*srcLen += inCur;
p->unpackSize -= (UInt32)inCur;
p->state = (p->unpackSize == 0) ? LZMA2_STATE_CONTROL : LZMA2_STATE_DATA_CONT;
}
else
{
SRes res;
if (p->state == LZMA2_STATE_DATA)
{
BoolInt initDic = (p->control >= 0xE0);
BoolInt initState = (p->control >= 0xA0);
LzmaDec_InitDicAndState(&p->decoder, initDic, initState);
p->state = LZMA2_STATE_DATA_CONT;
}
if (inCur > p->packSize)
inCur = (SizeT)p->packSize;
res = LzmaDec_DecodeToDic(&p->decoder, dicPos + outCur, src, &inCur, curFinishMode, status);
src += inCur;
*srcLen += inCur;
p->packSize -= (UInt32)inCur;
outCur = p->decoder.dicPos - dicPos;
p->unpackSize -= (UInt32)outCur;
if (res != 0)
break;
if (*status == LZMA_STATUS_NEEDS_MORE_INPUT)
{
if (p->packSize == 0)
break;
return SZ_OK;
}
if (inCur == 0 && outCur == 0)
{
if (*status != LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
|| p->unpackSize != 0
|| p->packSize != 0)
break;
p->state = LZMA2_STATE_CONTROL;
}
*status = LZMA_STATUS_NOT_SPECIFIED;
}
}
}
*status = LZMA_STATUS_NOT_SPECIFIED;
p->state = LZMA2_STATE_ERROR;
return SZ_ERROR_DATA;
}
ELzma2ParseStatus Lzma2Dec_Parse(CLzma2Dec *p,
SizeT outSize,
const Byte *src, SizeT *srcLen,
int checkFinishBlock)
{
SizeT inSize = *srcLen;
*srcLen = 0;
while (p->state != LZMA2_STATE_ERROR)
{
if (p->state == LZMA2_STATE_FINISHED)
return (ELzma2ParseStatus)LZMA_STATUS_FINISHED_WITH_MARK;
if (outSize == 0 && !checkFinishBlock)
return (ELzma2ParseStatus)LZMA_STATUS_NOT_FINISHED;
if (p->state != LZMA2_STATE_DATA && p->state != LZMA2_STATE_DATA_CONT)
{
if (*srcLen == inSize)
return (ELzma2ParseStatus)LZMA_STATUS_NEEDS_MORE_INPUT;
(*srcLen)++;
p->state = Lzma2Dec_UpdateState(p, *src++);
if (p->state == LZMA2_STATE_UNPACK0)
{
// if (p->decoder.dicPos != 0)
if (p->control == LZMA2_CONTROL_COPY_RESET_DIC || p->control >= 0xE0)
return LZMA2_PARSE_STATUS_NEW_BLOCK;
// if (outSize == 0) return LZMA_STATUS_NOT_FINISHED;
}
// The following code can be commented.
// It's not big problem, if we read additional input bytes.
// It will be stopped later in LZMA2_STATE_DATA / LZMA2_STATE_DATA_CONT state.
if (outSize == 0 && p->state != LZMA2_STATE_FINISHED)
{
// checkFinishBlock is true. So we expect that block must be finished,
// We can return LZMA_STATUS_NOT_SPECIFIED or LZMA_STATUS_NOT_FINISHED here
// break;
return (ELzma2ParseStatus)LZMA_STATUS_NOT_FINISHED;
}
if (p->state == LZMA2_STATE_DATA)
return LZMA2_PARSE_STATUS_NEW_CHUNK;
continue;
}
if (outSize == 0)
return (ELzma2ParseStatus)LZMA_STATUS_NOT_FINISHED;
{
SizeT inCur = inSize - *srcLen;
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (inCur == 0)
return (ELzma2ParseStatus)LZMA_STATUS_NEEDS_MORE_INPUT;
if (inCur > p->unpackSize)
inCur = p->unpackSize;
if (inCur > outSize)
inCur = outSize;
p->decoder.dicPos += inCur;
src += inCur;
*srcLen += inCur;
outSize -= inCur;
p->unpackSize -= (UInt32)inCur;
p->state = (p->unpackSize == 0) ? LZMA2_STATE_CONTROL : LZMA2_STATE_DATA_CONT;
}
else
{
p->isExtraMode = True;
if (inCur == 0)
{
if (p->packSize != 0)
return (ELzma2ParseStatus)LZMA_STATUS_NEEDS_MORE_INPUT;
}
else if (p->state == LZMA2_STATE_DATA)
{
p->state = LZMA2_STATE_DATA_CONT;
if (*src != 0)
{
// first byte of lzma chunk must be Zero
*srcLen += 1;
p->packSize--;
break;
}
}
if (inCur > p->packSize)
inCur = (SizeT)p->packSize;
src += inCur;
*srcLen += inCur;
p->packSize -= (UInt32)inCur;
if (p->packSize == 0)
{
SizeT rem = outSize;
if (rem > p->unpackSize)
rem = p->unpackSize;
p->decoder.dicPos += rem;
p->unpackSize -= (UInt32)rem;
outSize -= rem;
if (p->unpackSize == 0)
p->state = LZMA2_STATE_CONTROL;
}
}
}
}
p->state = LZMA2_STATE_ERROR;
return (ELzma2ParseStatus)LZMA_STATUS_NOT_SPECIFIED;
}
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT outSize = *destLen, inSize = *srcLen;
*srcLen = *destLen = 0;
for (;;)
{
SizeT inCur = inSize, outCur, dicPos;
ELzmaFinishMode curFinishMode;
SRes res;
if (p->decoder.dicPos == p->decoder.dicBufSize)
p->decoder.dicPos = 0;
dicPos = p->decoder.dicPos;
curFinishMode = LZMA_FINISH_ANY;
outCur = p->decoder.dicBufSize - dicPos;
if (outCur >= outSize)
{
outCur = outSize;
curFinishMode = finishMode;
}
res = Lzma2Dec_DecodeToDic(p, dicPos + outCur, src, &inCur, curFinishMode, status);
src += inCur;
inSize -= inCur;
*srcLen += inCur;
outCur = p->decoder.dicPos - dicPos;
memcpy(dest, p->decoder.dic + dicPos, outCur);
dest += outCur;
outSize -= outCur;
*destLen += outCur;
if (res != 0)
return res;
if (outCur == 0 || outSize == 0)
return SZ_OK;
}
}
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
Byte prop, ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAllocPtr alloc)
{
CLzma2Dec p;
SRes res;
SizeT outSize = *destLen, inSize = *srcLen;
*destLen = *srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
Lzma2Dec_Construct(&p);
RINOK(Lzma2Dec_AllocateProbs(&p, prop, alloc));
p.decoder.dic = dest;
p.decoder.dicBufSize = outSize;
Lzma2Dec_Init(&p);
*srcLen = inSize;
res = Lzma2Dec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
*destLen = p.decoder.dicPos;
if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
res = SZ_ERROR_INPUT_EOF;
Lzma2Dec_FreeProbs(&p, alloc);
return res;
}

@ -0,0 +1,120 @@
/* Lzma2Dec.h -- LZMA2 Decoder
2018-02-19 : Igor Pavlov : Public domain */
#ifndef __LZMA2_DEC_H
#define __LZMA2_DEC_H
#include "LzmaDec.h"
EXTERN_C_BEGIN
/* ---------- State Interface ---------- */
typedef struct
{
unsigned state;
Byte control;
Byte needInitLevel;
Byte isExtraMode;
Byte _pad_;
UInt32 packSize;
UInt32 unpackSize;
CLzmaDec decoder;
} CLzma2Dec;
#define Lzma2Dec_Construct(p) LzmaDec_Construct(&(p)->decoder)
#define Lzma2Dec_FreeProbs(p, alloc) LzmaDec_FreeProbs(&(p)->decoder, alloc)
#define Lzma2Dec_Free(p, alloc) LzmaDec_Free(&(p)->decoder, alloc)
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc);
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc);
void Lzma2Dec_Init(CLzma2Dec *p);
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen or dicLimit).
LZMA_FINISH_ANY - use smallest number of input bytes
LZMA_FINISH_END - read EndOfStream marker after decoding
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
LZMA_STATUS_NEEDS_MORE_INPUT
SZ_ERROR_DATA - Data error
*/
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- LZMA2 block and chunk parsing ---------- */
/*
Lzma2Dec_Parse() parses compressed data stream up to next independent block or next chunk data.
It can return LZMA_STATUS_* code or LZMA2_PARSE_STATUS_* code:
- LZMA2_PARSE_STATUS_NEW_BLOCK - there is new block, and 1 additional byte (control byte of next block header) was read from input.
- LZMA2_PARSE_STATUS_NEW_CHUNK - there is new chunk, and only lzma2 header of new chunk was read.
CLzma2Dec::unpackSize contains unpack size of that chunk
*/
typedef enum
{
/*
LZMA_STATUS_NOT_SPECIFIED // data error
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED //
LZMA_STATUS_NEEDS_MORE_INPUT
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK // unused
*/
LZMA2_PARSE_STATUS_NEW_BLOCK = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK + 1,
LZMA2_PARSE_STATUS_NEW_CHUNK
} ELzma2ParseStatus;
ELzma2ParseStatus Lzma2Dec_Parse(CLzma2Dec *p,
SizeT outSize, // output size
const Byte *src, SizeT *srcLen,
int checkFinishBlock // set (checkFinishBlock = 1), if it must read full input data, if decoder.dicPos reaches blockMax position.
);
/*
LZMA2 parser doesn't decode LZMA chunks, so we must read
full input LZMA chunk to decode some part of LZMA chunk.
Lzma2Dec_GetUnpackExtra() returns the value that shows
max possible number of output bytes that can be output by decoder
at current input positon.
*/
#define Lzma2Dec_GetUnpackExtra(p) ((p)->isExtraMode ? (p)->unpackSize : 0);
/* ---------- One Call Interface ---------- */
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
LZMA_FINISH_ANY - use smallest number of input bytes
LZMA_FINISH_END - read EndOfStream marker after decoding
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
*/
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
Byte prop, ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAllocPtr alloc);
EXTERN_C_END
#endif

File diff suppressed because it is too large Load Diff

@ -0,0 +1,79 @@
/* Lzma2DecMt.h -- LZMA2 Decoder Multi-thread
2018-02-17 : Igor Pavlov : Public domain */
#ifndef __LZMA2_DEC_MT_H
#define __LZMA2_DEC_MT_H
#include "7zTypes.h"
EXTERN_C_BEGIN
typedef struct
{
size_t inBufSize_ST;
size_t outStep_ST;
#ifndef _7ZIP_ST
unsigned numThreads;
size_t inBufSize_MT;
size_t outBlockMax;
size_t inBlockMax;
#endif
} CLzma2DecMtProps;
/* init to single-thread mode */
void Lzma2DecMtProps_Init(CLzma2DecMtProps *p);
/* ---------- CLzma2DecMtHandle Interface ---------- */
/* Lzma2DecMt_ * functions can return the following exit codes:
SRes:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater in props
SZ_ERROR_WRITE - ISeqOutStream write callback error
// SZ_ERROR_OUTPUT_EOF - output buffer overflow - version with (Byte *) output
SZ_ERROR_PROGRESS - some break from progress callback
SZ_ERROR_THREAD - error in multithreading functions (only for Mt version)
*/
typedef void * CLzma2DecMtHandle;
CLzma2DecMtHandle Lzma2DecMt_Create(ISzAllocPtr alloc, ISzAllocPtr allocMid);
void Lzma2DecMt_Destroy(CLzma2DecMtHandle p);
SRes Lzma2DecMt_Decode(CLzma2DecMtHandle p,
Byte prop,
const CLzma2DecMtProps *props,
ISeqOutStream *outStream,
const UInt64 *outDataSize, // NULL means undefined
int finishMode, // 0 - partial unpacking is allowed, 1 - if lzma2 stream must be finished
// Byte *outBuf, size_t *outBufSize,
ISeqInStream *inStream,
// const Byte *inData, size_t inDataSize,
// out variables:
UInt64 *inProcessed,
int *isMT, /* out: (*isMT == 0), if single thread decoding was used */
// UInt64 *outProcessed,
ICompressProgress *progress);
/* ---------- Read from CLzma2DecMtHandle Interface ---------- */
SRes Lzma2DecMt_Init(CLzma2DecMtHandle pp,
Byte prop,
const CLzma2DecMtProps *props,
const UInt64 *outDataSize, int finishMode,
ISeqInStream *inStream);
SRes Lzma2DecMt_Read(CLzma2DecMtHandle pp,
Byte *data, size_t *outSize,
UInt64 *inStreamProcessed);
EXTERN_C_END
#endif

@ -0,0 +1,803 @@
/* Lzma2Enc.c -- LZMA2 Encoder
2018-07-04 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
/* #define _7ZIP_ST */
#include "Lzma2Enc.h"
#ifndef _7ZIP_ST
#include "MtCoder.h"
#else
#define MTCODER__THREADS_MAX 1
#endif
#define LZMA2_CONTROL_LZMA (1 << 7)
#define LZMA2_CONTROL_COPY_NO_RESET 2
#define LZMA2_CONTROL_COPY_RESET_DIC 1
#define LZMA2_CONTROL_EOF 0
#define LZMA2_LCLP_MAX 4
#define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p) & 1)) << ((p) / 2 + 11))
#define LZMA2_PACK_SIZE_MAX (1 << 16)
#define LZMA2_COPY_CHUNK_SIZE LZMA2_PACK_SIZE_MAX
#define LZMA2_UNPACK_SIZE_MAX (1 << 21)
#define LZMA2_KEEP_WINDOW_SIZE LZMA2_UNPACK_SIZE_MAX
#define LZMA2_CHUNK_SIZE_COMPRESSED_MAX ((1 << 16) + 16)
#define PRF(x) /* x */
/* ---------- CLimitedSeqInStream ---------- */
typedef struct
{
ISeqInStream vt;
ISeqInStream *realStream;
UInt64 limit;
UInt64 processed;
int finished;
} CLimitedSeqInStream;
static void LimitedSeqInStream_Init(CLimitedSeqInStream *p)
{
p->limit = (UInt64)(Int64)-1;
p->processed = 0;
p->finished = 0;
}
static SRes LimitedSeqInStream_Read(const ISeqInStream *pp, void *data, size_t *size)
{
CLimitedSeqInStream *p = CONTAINER_FROM_VTBL(pp, CLimitedSeqInStream, vt);
size_t size2 = *size;
SRes res = SZ_OK;
if (p->limit != (UInt64)(Int64)-1)
{
UInt64 rem = p->limit - p->processed;
if (size2 > rem)
size2 = (size_t)rem;
}
if (size2 != 0)
{
res = ISeqInStream_Read(p->realStream, data, &size2);
p->finished = (size2 == 0 ? 1 : 0);
p->processed += size2;
}
*size = size2;
return res;
}
/* ---------- CLzma2EncInt ---------- */
typedef struct
{
CLzmaEncHandle enc;
Byte propsAreSet;
Byte propsByte;
Byte needInitState;
Byte needInitProp;
UInt64 srcPos;
} CLzma2EncInt;
static SRes Lzma2EncInt_InitStream(CLzma2EncInt *p, const CLzma2EncProps *props)
{
if (!p->propsAreSet)
{
SizeT propsSize = LZMA_PROPS_SIZE;
Byte propsEncoded[LZMA_PROPS_SIZE];
RINOK(LzmaEnc_SetProps(p->enc, &props->lzmaProps));
RINOK(LzmaEnc_WriteProperties(p->enc, propsEncoded, &propsSize));
p->propsByte = propsEncoded[0];
p->propsAreSet = True;
}
return SZ_OK;
}
static void Lzma2EncInt_InitBlock(CLzma2EncInt *p)
{
p->srcPos = 0;
p->needInitState = True;
p->needInitProp = True;
}
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp, ISeqInStream *inStream, UInt32 keepWindowSize,
ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, BoolInt reInit,
Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize);
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp);
void LzmaEnc_Finish(CLzmaEncHandle pp);
void LzmaEnc_SaveState(CLzmaEncHandle pp);
void LzmaEnc_RestoreState(CLzmaEncHandle pp);
/*
UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp);
*/
static SRes Lzma2EncInt_EncodeSubblock(CLzma2EncInt *p, Byte *outBuf,
size_t *packSizeRes, ISeqOutStream *outStream)
{
size_t packSizeLimit = *packSizeRes;
size_t packSize = packSizeLimit;
UInt32 unpackSize = LZMA2_UNPACK_SIZE_MAX;
unsigned lzHeaderSize = 5 + (p->needInitProp ? 1 : 0);
BoolInt useCopyBlock;
SRes res;
*packSizeRes = 0;
if (packSize < lzHeaderSize)
return SZ_ERROR_OUTPUT_EOF;
packSize -= lzHeaderSize;
LzmaEnc_SaveState(p->enc);
res = LzmaEnc_CodeOneMemBlock(p->enc, p->needInitState,
outBuf + lzHeaderSize, &packSize, LZMA2_PACK_SIZE_MAX, &unpackSize);
PRF(printf("\npackSize = %7d unpackSize = %7d ", packSize, unpackSize));
if (unpackSize == 0)
return res;
if (res == SZ_OK)
useCopyBlock = (packSize + 2 >= unpackSize || packSize > (1 << 16));
else
{
if (res != SZ_ERROR_OUTPUT_EOF)
return res;
res = SZ_OK;
useCopyBlock = True;
}
if (useCopyBlock)
{
size_t destPos = 0;
PRF(printf("################# COPY "));
while (unpackSize > 0)
{
UInt32 u = (unpackSize < LZMA2_COPY_CHUNK_SIZE) ? unpackSize : LZMA2_COPY_CHUNK_SIZE;
if (packSizeLimit - destPos < u + 3)
return SZ_ERROR_OUTPUT_EOF;
outBuf[destPos++] = (Byte)(p->srcPos == 0 ? LZMA2_CONTROL_COPY_RESET_DIC : LZMA2_CONTROL_COPY_NO_RESET);
outBuf[destPos++] = (Byte)((u - 1) >> 8);
outBuf[destPos++] = (Byte)(u - 1);
memcpy(outBuf + destPos, LzmaEnc_GetCurBuf(p->enc) - unpackSize, u);
unpackSize -= u;
destPos += u;
p->srcPos += u;
if (outStream)
{
*packSizeRes += destPos;
if (ISeqOutStream_Write(outStream, outBuf, destPos) != destPos)
return SZ_ERROR_WRITE;
destPos = 0;
}
else
*packSizeRes = destPos;
/* needInitState = True; */
}
LzmaEnc_RestoreState(p->enc);
return SZ_OK;
}
{
size_t destPos = 0;
UInt32 u = unpackSize - 1;
UInt32 pm = (UInt32)(packSize - 1);
unsigned mode = (p->srcPos == 0) ? 3 : (p->needInitState ? (p->needInitProp ? 2 : 1) : 0);
PRF(printf(" "));
outBuf[destPos++] = (Byte)(LZMA2_CONTROL_LZMA | (mode << 5) | ((u >> 16) & 0x1F));
outBuf[destPos++] = (Byte)(u >> 8);
outBuf[destPos++] = (Byte)u;
outBuf[destPos++] = (Byte)(pm >> 8);
outBuf[destPos++] = (Byte)pm;
if (p->needInitProp)
outBuf[destPos++] = p->propsByte;
p->needInitProp = False;
p->needInitState = False;
destPos += packSize;
p->srcPos += unpackSize;
if (outStream)
if (ISeqOutStream_Write(outStream, outBuf, destPos) != destPos)
return SZ_ERROR_WRITE;
*packSizeRes = destPos;
return SZ_OK;
}
}
/* ---------- Lzma2 Props ---------- */
void Lzma2EncProps_Init(CLzma2EncProps *p)
{
LzmaEncProps_Init(&p->lzmaProps);
p->blockSize = LZMA2_ENC_PROPS__BLOCK_SIZE__AUTO;
p->numBlockThreads_Reduced = -1;
p->numBlockThreads_Max = -1;
p->numTotalThreads = -1;
}
void Lzma2EncProps_Normalize(CLzma2EncProps *p)
{
UInt64 fileSize;
int t1, t1n, t2, t2r, t3;
{
CLzmaEncProps lzmaProps = p->lzmaProps;
LzmaEncProps_Normalize(&lzmaProps);
t1n = lzmaProps.numThreads;
}
t1 = p->lzmaProps.numThreads;
t2 = p->numBlockThreads_Max;
t3 = p->numTotalThreads;
if (t2 > MTCODER__THREADS_MAX)
t2 = MTCODER__THREADS_MAX;
if (t3 <= 0)
{
if (t2 <= 0)
t2 = 1;
t3 = t1n * t2;
}
else if (t2 <= 0)
{
t2 = t3 / t1n;
if (t2 == 0)
{
t1 = 1;
t2 = t3;
}
if (t2 > MTCODER__THREADS_MAX)
t2 = MTCODER__THREADS_MAX;
}
else if (t1 <= 0)
{
t1 = t3 / t2;
if (t1 == 0)
t1 = 1;
}
else
t3 = t1n * t2;
p->lzmaProps.numThreads = t1;
t2r = t2;
fileSize = p->lzmaProps.reduceSize;
if ( p->blockSize != LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID
&& p->blockSize != LZMA2_ENC_PROPS__BLOCK_SIZE__AUTO
&& (p->blockSize < fileSize || fileSize == (UInt64)(Int64)-1))
p->lzmaProps.reduceSize = p->blockSize;
LzmaEncProps_Normalize(&p->lzmaProps);
p->lzmaProps.reduceSize = fileSize;
t1 = p->lzmaProps.numThreads;
if (p->blockSize == LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID)
{
t2r = t2 = 1;
t3 = t1;
}
else if (p->blockSize == LZMA2_ENC_PROPS__BLOCK_SIZE__AUTO && t2 <= 1)
{
/* if there is no block multi-threading, we use SOLID block */
p->blockSize = LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID;
}
else
{
if (p->blockSize == LZMA2_ENC_PROPS__BLOCK_SIZE__AUTO)
{
const UInt32 kMinSize = (UInt32)1 << 20;
const UInt32 kMaxSize = (UInt32)1 << 28;
const UInt32 dictSize = p->lzmaProps.dictSize;
UInt64 blockSize = (UInt64)dictSize << 2;
if (blockSize < kMinSize) blockSize = kMinSize;
if (blockSize > kMaxSize) blockSize = kMaxSize;
if (blockSize < dictSize) blockSize = dictSize;
blockSize += (kMinSize - 1);
blockSize &= ~(UInt64)(kMinSize - 1);
p->blockSize = blockSize;
}
if (t2 > 1 && fileSize != (UInt64)(Int64)-1)
{
UInt64 numBlocks = fileSize / p->blockSize;
if (numBlocks * p->blockSize != fileSize)
numBlocks++;
if (numBlocks < (unsigned)t2)
{
t2r = (unsigned)numBlocks;
if (t2r == 0)
t2r = 1;
t3 = t1 * t2r;
}
}
}
p->numBlockThreads_Max = t2;
p->numBlockThreads_Reduced = t2r;
p->numTotalThreads = t3;
}
static SRes Progress(ICompressProgress *p, UInt64 inSize, UInt64 outSize)
{
return (p && ICompressProgress_Progress(p, inSize, outSize) != SZ_OK) ? SZ_ERROR_PROGRESS : SZ_OK;
}
/* ---------- Lzma2 ---------- */
typedef struct
{
Byte propEncoded;
CLzma2EncProps props;
UInt64 expectedDataSize;
Byte *tempBufLzma;
ISzAllocPtr alloc;
ISzAllocPtr allocBig;
CLzma2EncInt coders[MTCODER__THREADS_MAX];
#ifndef _7ZIP_ST
ISeqOutStream *outStream;
Byte *outBuf;
size_t outBuf_Rem; /* remainder in outBuf */
size_t outBufSize; /* size of allocated outBufs[i] */
size_t outBufsDataSizes[MTCODER__BLOCKS_MAX];
BoolInt mtCoder_WasConstructed;
CMtCoder mtCoder;
Byte *outBufs[MTCODER__BLOCKS_MAX];
#endif
} CLzma2Enc;
CLzma2EncHandle Lzma2Enc_Create(ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
CLzma2Enc *p = (CLzma2Enc *)ISzAlloc_Alloc(alloc, sizeof(CLzma2Enc));
if (!p)
return NULL;
Lzma2EncProps_Init(&p->props);
Lzma2EncProps_Normalize(&p->props);
p->expectedDataSize = (UInt64)(Int64)-1;
p->tempBufLzma = NULL;
p->alloc = alloc;
p->allocBig = allocBig;
{
unsigned i;
for (i = 0; i < MTCODER__THREADS_MAX; i++)
p->coders[i].enc = NULL;
}
#ifndef _7ZIP_ST
p->mtCoder_WasConstructed = False;
{
unsigned i;
for (i = 0; i < MTCODER__BLOCKS_MAX; i++)
p->outBufs[i] = NULL;
p->outBufSize = 0;
}
#endif
return p;
}
#ifndef _7ZIP_ST
static void Lzma2Enc_FreeOutBufs(CLzma2Enc *p)
{
unsigned i;
for (i = 0; i < MTCODER__BLOCKS_MAX; i++)
if (p->outBufs[i])
{
ISzAlloc_Free(p->alloc, p->outBufs[i]);
p->outBufs[i] = NULL;
}
p->outBufSize = 0;
}
#endif
void Lzma2Enc_Destroy(CLzma2EncHandle pp)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
unsigned i;
for (i = 0; i < MTCODER__THREADS_MAX; i++)
{
CLzma2EncInt *t = &p->coders[i];
if (t->enc)
{
LzmaEnc_Destroy(t->enc, p->alloc, p->allocBig);
t->enc = NULL;
}
}
#ifndef _7ZIP_ST
if (p->mtCoder_WasConstructed)
{
MtCoder_Destruct(&p->mtCoder);
p->mtCoder_WasConstructed = False;
}
Lzma2Enc_FreeOutBufs(p);
#endif
ISzAlloc_Free(p->alloc, p->tempBufLzma);
p->tempBufLzma = NULL;
ISzAlloc_Free(p->alloc, pp);
}
SRes Lzma2Enc_SetProps(CLzma2EncHandle pp, const CLzma2EncProps *props)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
CLzmaEncProps lzmaProps = props->lzmaProps;
LzmaEncProps_Normalize(&lzmaProps);
if (lzmaProps.lc + lzmaProps.lp > LZMA2_LCLP_MAX)
return SZ_ERROR_PARAM;
p->props = *props;
Lzma2EncProps_Normalize(&p->props);
return SZ_OK;
}
void Lzma2Enc_SetDataSize(CLzmaEncHandle pp, UInt64 expectedDataSiize)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
p->expectedDataSize = expectedDataSiize;
}
Byte Lzma2Enc_WriteProperties(CLzma2EncHandle pp)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
unsigned i;
UInt32 dicSize = LzmaEncProps_GetDictSize(&p->props.lzmaProps);
for (i = 0; i < 40; i++)
if (dicSize <= LZMA2_DIC_SIZE_FROM_PROP(i))
break;
return (Byte)i;
}
static SRes Lzma2Enc_EncodeMt1(
CLzma2Enc *me,
CLzma2EncInt *p,
ISeqOutStream *outStream,
Byte *outBuf, size_t *outBufSize,
ISeqInStream *inStream,
const Byte *inData, size_t inDataSize,
int finished,
ICompressProgress *progress)
{
UInt64 unpackTotal = 0;
UInt64 packTotal = 0;
size_t outLim = 0;
CLimitedSeqInStream limitedInStream;
if (outBuf)
{
outLim = *outBufSize;
*outBufSize = 0;
}
if (!p->enc)
{
p->propsAreSet = False;
p->enc = LzmaEnc_Create(me->alloc);
if (!p->enc)
return SZ_ERROR_MEM;
}
limitedInStream.realStream = inStream;
if (inStream)
{
limitedInStream.vt.Read = LimitedSeqInStream_Read;
}
if (!outBuf)
{
// outStream version works only in one thread. So we use CLzma2Enc::tempBufLzma
if (!me->tempBufLzma)
{
me->tempBufLzma = (Byte *)ISzAlloc_Alloc(me->alloc, LZMA2_CHUNK_SIZE_COMPRESSED_MAX);
if (!me->tempBufLzma)
return SZ_ERROR_MEM;
}
}
RINOK(Lzma2EncInt_InitStream(p, &me->props));
for (;;)
{
SRes res = SZ_OK;
size_t inSizeCur = 0;
Lzma2EncInt_InitBlock(p);
LimitedSeqInStream_Init(&limitedInStream);
limitedInStream.limit = me->props.blockSize;
if (inStream)
{
UInt64 expected = (UInt64)(Int64)-1;
// inStream version works only in one thread. So we use CLzma2Enc::expectedDataSize
if (me->expectedDataSize != (UInt64)(Int64)-1
&& me->expectedDataSize >= unpackTotal)
expected = me->expectedDataSize - unpackTotal;
if (me->props.blockSize != LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID
&& expected > me->props.blockSize)
expected = (size_t)me->props.blockSize;
LzmaEnc_SetDataSize(p->enc, expected);
RINOK(LzmaEnc_PrepareForLzma2(p->enc,
&limitedInStream.vt,
LZMA2_KEEP_WINDOW_SIZE,
me->alloc,
me->allocBig));
}
else
{
inSizeCur = inDataSize - (size_t)unpackTotal;
if (me->props.blockSize != LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID
&& inSizeCur > me->props.blockSize)
inSizeCur = (size_t)me->props.blockSize;
// LzmaEnc_SetDataSize(p->enc, inSizeCur);
RINOK(LzmaEnc_MemPrepare(p->enc,
inData + (size_t)unpackTotal, inSizeCur,
LZMA2_KEEP_WINDOW_SIZE,
me->alloc,
me->allocBig));
}
for (;;)
{
size_t packSize = LZMA2_CHUNK_SIZE_COMPRESSED_MAX;
if (outBuf)
packSize = outLim - (size_t)packTotal;
res = Lzma2EncInt_EncodeSubblock(p,
outBuf ? outBuf + (size_t)packTotal : me->tempBufLzma, &packSize,
outBuf ? NULL : outStream);
if (res != SZ_OK)
break;
packTotal += packSize;
if (outBuf)
*outBufSize = (size_t)packTotal;
res = Progress(progress, unpackTotal + p->srcPos, packTotal);
if (res != SZ_OK)
break;
/*
if (LzmaEnc_GetNumAvailableBytes(p->enc) == 0)
break;
*/
if (packSize == 0)
break;
}
LzmaEnc_Finish(p->enc);
unpackTotal += p->srcPos;
RINOK(res);
if (p->srcPos != (inStream ? limitedInStream.processed : inSizeCur))
return SZ_ERROR_FAIL;
if (inStream ? limitedInStream.finished : (unpackTotal == inDataSize))
{
if (finished)
{
if (outBuf)
{
size_t destPos = *outBufSize;
if (destPos >= outLim)
return SZ_ERROR_OUTPUT_EOF;
outBuf[destPos] = 0;
*outBufSize = destPos + 1;
}
else
{
Byte b = 0;
if (ISeqOutStream_Write(outStream, &b, 1) != 1)
return SZ_ERROR_WRITE;
}
}
return SZ_OK;
}
}
}
#ifndef _7ZIP_ST
static SRes Lzma2Enc_MtCallback_Code(void *pp, unsigned coderIndex, unsigned outBufIndex,
const Byte *src, size_t srcSize, int finished)
{
CLzma2Enc *me = (CLzma2Enc *)pp;
size_t destSize = me->outBufSize;
SRes res;
CMtProgressThunk progressThunk;
Byte *dest = me->outBufs[outBufIndex];
me->outBufsDataSizes[outBufIndex] = 0;
if (!dest)
{
dest = (Byte *)ISzAlloc_Alloc(me->alloc, me->outBufSize);
if (!dest)
return SZ_ERROR_MEM;
me->outBufs[outBufIndex] = dest;
}
MtProgressThunk_CreateVTable(&progressThunk);
progressThunk.mtProgress = &me->mtCoder.mtProgress;
progressThunk.inSize = 0;
progressThunk.outSize = 0;
res = Lzma2Enc_EncodeMt1(me,
&me->coders[coderIndex],
NULL, dest, &destSize,
NULL, src, srcSize,
finished,
&progressThunk.vt);
me->outBufsDataSizes[outBufIndex] = destSize;
return res;
}
static SRes Lzma2Enc_MtCallback_Write(void *pp, unsigned outBufIndex)
{
CLzma2Enc *me = (CLzma2Enc *)pp;
size_t size = me->outBufsDataSizes[outBufIndex];
const Byte *data = me->outBufs[outBufIndex];
if (me->outStream)
return ISeqOutStream_Write(me->outStream, data, size) == size ? SZ_OK : SZ_ERROR_WRITE;
if (size > me->outBuf_Rem)
return SZ_ERROR_OUTPUT_EOF;
memcpy(me->outBuf, data, size);
me->outBuf_Rem -= size;
me->outBuf += size;
return SZ_OK;
}
#endif
SRes Lzma2Enc_Encode2(CLzma2EncHandle pp,
ISeqOutStream *outStream,
Byte *outBuf, size_t *outBufSize,
ISeqInStream *inStream,
const Byte *inData, size_t inDataSize,
ICompressProgress *progress)
{
CLzma2Enc *p = (CLzma2Enc *)pp;
if (inStream && inData)
return SZ_ERROR_PARAM;
if (outStream && outBuf)
return SZ_ERROR_PARAM;
{
unsigned i;
for (i = 0; i < MTCODER__THREADS_MAX; i++)
p->coders[i].propsAreSet = False;
}
#ifndef _7ZIP_ST
if (p->props.numBlockThreads_Reduced > 1)
{
IMtCoderCallback2 vt;
if (!p->mtCoder_WasConstructed)
{
p->mtCoder_WasConstructed = True;
MtCoder_Construct(&p->mtCoder);
}
vt.Code = Lzma2Enc_MtCallback_Code;
vt.Write = Lzma2Enc_MtCallback_Write;
p->outStream = outStream;
p->outBuf = NULL;
p->outBuf_Rem = 0;
if (!outStream)
{
p->outBuf = outBuf;
p->outBuf_Rem = *outBufSize;
*outBufSize = 0;
}
p->mtCoder.allocBig = p->allocBig;
p->mtCoder.progress = progress;
p->mtCoder.inStream = inStream;
p->mtCoder.inData = inData;
p->mtCoder.inDataSize = inDataSize;
p->mtCoder.mtCallback = &vt;
p->mtCoder.mtCallbackObject = p;
p->mtCoder.blockSize = (size_t)p->props.blockSize;
if (p->mtCoder.blockSize != p->props.blockSize)
return SZ_ERROR_PARAM; /* SZ_ERROR_MEM */
{
size_t destBlockSize = p->mtCoder.blockSize + (p->mtCoder.blockSize >> 10) + 16;
if (destBlockSize < p->mtCoder.blockSize)
return SZ_ERROR_PARAM;
if (p->outBufSize != destBlockSize)
Lzma2Enc_FreeOutBufs(p);
p->outBufSize = destBlockSize;
}
p->mtCoder.numThreadsMax = p->props.numBlockThreads_Max;
p->mtCoder.expectedDataSize = p->expectedDataSize;
{
SRes res = MtCoder_Code(&p->mtCoder);
if (!outStream)
*outBufSize = p->outBuf - outBuf;
return res;
}
}
#endif
return Lzma2Enc_EncodeMt1(p,
&p->coders[0],
outStream, outBuf, outBufSize,
inStream, inData, inDataSize,
True, /* finished */
progress);
}

@ -0,0 +1,55 @@
/* Lzma2Enc.h -- LZMA2 Encoder
2017-07-27 : Igor Pavlov : Public domain */
#ifndef __LZMA2_ENC_H
#define __LZMA2_ENC_H
#include "LzmaEnc.h"
EXTERN_C_BEGIN
#define LZMA2_ENC_PROPS__BLOCK_SIZE__AUTO 0
#define LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID ((UInt64)(Int64)-1)
typedef struct
{
CLzmaEncProps lzmaProps;
UInt64 blockSize;
int numBlockThreads_Reduced;
int numBlockThreads_Max;
int numTotalThreads;
} CLzma2EncProps;
void Lzma2EncProps_Init(CLzma2EncProps *p);
void Lzma2EncProps_Normalize(CLzma2EncProps *p);
/* ---------- CLzmaEnc2Handle Interface ---------- */
/* Lzma2Enc_* functions can return the following exit codes:
SRes:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater in props
SZ_ERROR_WRITE - ISeqOutStream write callback error
SZ_ERROR_OUTPUT_EOF - output buffer overflow - version with (Byte *) output
SZ_ERROR_PROGRESS - some break from progress callback
SZ_ERROR_THREAD - error in multithreading functions (only for Mt version)
*/
typedef void * CLzma2EncHandle;
CLzma2EncHandle Lzma2Enc_Create(ISzAllocPtr alloc, ISzAllocPtr allocBig);
void Lzma2Enc_Destroy(CLzma2EncHandle p);
SRes Lzma2Enc_SetProps(CLzma2EncHandle p, const CLzma2EncProps *props);
void Lzma2Enc_SetDataSize(CLzma2EncHandle p, UInt64 expectedDataSiize);
Byte Lzma2Enc_WriteProperties(CLzma2EncHandle p);
SRes Lzma2Enc_Encode2(CLzma2EncHandle p,
ISeqOutStream *outStream,
Byte *outBuf, size_t *outBufSize,
ISeqInStream *inStream,
const Byte *inData, size_t inDataSize,
ICompressProgress *progress);
EXTERN_C_END
#endif

@ -0,0 +1,111 @@
/* Lzma86.h -- LZMA + x86 (BCJ) Filter
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __LZMA86_H
#define __LZMA86_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define LZMA86_SIZE_OFFSET (1 + 5)
#define LZMA86_HEADER_SIZE (LZMA86_SIZE_OFFSET + 8)
/*
It's an example for LZMA + x86 Filter use.
You can use .lzma86 extension, if you write that stream to file.
.lzma86 header adds one additional byte to standard .lzma header.
.lzma86 header (14 bytes):
Offset Size Description
0 1 = 0 - no filter, pure LZMA
= 1 - x86 filter + LZMA
1 1 lc, lp and pb in encoded form
2 4 dictSize (little endian)
6 8 uncompressed size (little endian)
Lzma86_Encode
-------------
level - compression level: 0 <= level <= 9, the default value for "level" is 5.
dictSize - The dictionary size in bytes. The maximum value is
128 MB = (1 << 27) bytes for 32-bit version
1 GB = (1 << 30) bytes for 64-bit version
The default value is 16 MB = (1 << 24) bytes, for level = 5.
It's recommended to use the dictionary that is larger than 4 KB and
that can be calculated as (1 << N) or (3 << N) sizes.
For better compression ratio dictSize must be >= inSize.
filterMode:
SZ_FILTER_NO - no Filter
SZ_FILTER_YES - x86 Filter
SZ_FILTER_AUTO - it tries both alternatives to select best.
Encoder will use 2 or 3 passes:
2 passes when FILTER_NO provides better compression.
3 passes when FILTER_YES provides better compression.
Lzma86Encode allocates Data with MyAlloc functions.
RAM Requirements for compressing:
RamSize = dictionarySize * 11.5 + 6MB + FilterBlockSize
filterMode FilterBlockSize
SZ_FILTER_NO 0
SZ_FILTER_YES inSize
SZ_FILTER_AUTO inSize
Return code:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater
SZ_ERROR_OUTPUT_EOF - output buffer overflow
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
enum ESzFilterMode
{
SZ_FILTER_NO,
SZ_FILTER_YES,
SZ_FILTER_AUTO
};
SRes Lzma86_Encode(Byte *dest, size_t *destLen, const Byte *src, size_t srcLen,
int level, UInt32 dictSize, int filterMode);
/*
Lzma86_GetUnpackSize:
In:
src - input data
srcLen - input data size
Out:
unpackSize - size of uncompressed stream
Return code:
SZ_OK - OK
SZ_ERROR_INPUT_EOF - Error in headers
*/
SRes Lzma86_GetUnpackSize(const Byte *src, SizeT srcLen, UInt64 *unpackSize);
/*
Lzma86_Decode:
In:
dest - output data
destLen - output data size
src - input data
srcLen - input data size
Out:
destLen - processed output size
srcLen - processed input size
Return code:
SZ_OK - OK
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - unsupported file
SZ_ERROR_INPUT_EOF - it needs more bytes in input buffer
*/
SRes Lzma86_Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen);
EXTERN_C_END
#endif

@ -0,0 +1,54 @@
/* Lzma86Dec.c -- LZMA + x86 (BCJ) Filter Decoder
2016-05-16 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Lzma86.h"
#include "Alloc.h"
#include "Bra.h"
#include "LzmaDec.h"
SRes Lzma86_GetUnpackSize(const Byte *src, SizeT srcLen, UInt64 *unpackSize)
{
unsigned i;
if (srcLen < LZMA86_HEADER_SIZE)
return SZ_ERROR_INPUT_EOF;
*unpackSize = 0;
for (i = 0; i < sizeof(UInt64); i++)
*unpackSize += ((UInt64)src[LZMA86_SIZE_OFFSET + i]) << (8 * i);
return SZ_OK;
}
SRes Lzma86_Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen)
{
SRes res;
int useFilter;
SizeT inSizePure;
ELzmaStatus status;
if (*srcLen < LZMA86_HEADER_SIZE)
return SZ_ERROR_INPUT_EOF;
useFilter = src[0];
if (useFilter > 1)
{
*destLen = 0;
return SZ_ERROR_UNSUPPORTED;
}
inSizePure = *srcLen - LZMA86_HEADER_SIZE;
res = LzmaDecode(dest, destLen, src + LZMA86_HEADER_SIZE, &inSizePure,
src + 1, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status, &g_Alloc);
*srcLen = inSizePure + LZMA86_HEADER_SIZE;
if (res != SZ_OK)
return res;
if (useFilter == 1)
{
UInt32 x86State;
x86_Convert_Init(x86State);
x86_Convert(dest, *destLen, 0, &x86State, 0);
}
return SZ_OK;
}

@ -0,0 +1,106 @@
/* Lzma86Enc.c -- LZMA + x86 (BCJ) Filter Encoder
2018-07-04 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
#include "Lzma86.h"
#include "Alloc.h"
#include "Bra.h"
#include "LzmaEnc.h"
#define SZE_OUT_OVERFLOW SZE_DATA_ERROR
int Lzma86_Encode(Byte *dest, size_t *destLen, const Byte *src, size_t srcLen,
int level, UInt32 dictSize, int filterMode)
{
size_t outSize2 = *destLen;
Byte *filteredStream;
BoolInt useFilter;
int mainResult = SZ_ERROR_OUTPUT_EOF;
CLzmaEncProps props;
LzmaEncProps_Init(&props);
props.level = level;
props.dictSize = dictSize;
*destLen = 0;
if (outSize2 < LZMA86_HEADER_SIZE)
return SZ_ERROR_OUTPUT_EOF;
{
int i;
UInt64 t = srcLen;
for (i = 0; i < 8; i++, t >>= 8)
dest[LZMA86_SIZE_OFFSET + i] = (Byte)t;
}
filteredStream = 0;
useFilter = (filterMode != SZ_FILTER_NO);
if (useFilter)
{
if (srcLen != 0)
{
filteredStream = (Byte *)MyAlloc(srcLen);
if (filteredStream == 0)
return SZ_ERROR_MEM;
memcpy(filteredStream, src, srcLen);
}
{
UInt32 x86State;
x86_Convert_Init(x86State);
x86_Convert(filteredStream, srcLen, 0, &x86State, 1);
}
}
{
size_t minSize = 0;
BoolInt bestIsFiltered = False;
/* passes for SZ_FILTER_AUTO:
0 - BCJ + LZMA
1 - LZMA
2 - BCJ + LZMA agaian, if pass 0 (BCJ + LZMA) is better.
*/
int numPasses = (filterMode == SZ_FILTER_AUTO) ? 3 : 1;
int i;
for (i = 0; i < numPasses; i++)
{
size_t outSizeProcessed = outSize2 - LZMA86_HEADER_SIZE;
size_t outPropsSize = 5;
SRes curRes;
BoolInt curModeIsFiltered = (numPasses > 1 && i == numPasses - 1);
if (curModeIsFiltered && !bestIsFiltered)
break;
if (useFilter && i == 0)
curModeIsFiltered = True;
curRes = LzmaEncode(dest + LZMA86_HEADER_SIZE, &outSizeProcessed,
curModeIsFiltered ? filteredStream : src, srcLen,
&props, dest + 1, &outPropsSize, 0,
NULL, &g_Alloc, &g_Alloc);
if (curRes != SZ_ERROR_OUTPUT_EOF)
{
if (curRes != SZ_OK)
{
mainResult = curRes;
break;
}
if (outSizeProcessed <= minSize || mainResult != SZ_OK)
{
minSize = outSizeProcessed;
bestIsFiltered = curModeIsFiltered;
mainResult = SZ_OK;
}
}
}
dest[0] = (Byte)(bestIsFiltered ? 1 : 0);
*destLen = LZMA86_HEADER_SIZE + minSize;
}
if (useFilter)
MyFree(filteredStream);
return mainResult;
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,234 @@
/* LzmaDec.h -- LZMA Decoder
2018-04-21 : Igor Pavlov : Public domain */
#ifndef __LZMA_DEC_H
#define __LZMA_DEC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/* #define _LZMA_PROB32 */
/* _LZMA_PROB32 can increase the speed on some CPUs,
but memory usage for CLzmaDec::probs will be doubled in that case */
typedef
#ifdef _LZMA_PROB32
UInt32
#else
UInt16
#endif
CLzmaProb;
/* ---------- LZMA Properties ---------- */
#define LZMA_PROPS_SIZE 5
typedef struct _CLzmaProps
{
Byte lc;
Byte lp;
Byte pb;
Byte _pad_;
UInt32 dicSize;
} CLzmaProps;
/* LzmaProps_Decode - decodes properties
Returns:
SZ_OK
SZ_ERROR_UNSUPPORTED - Unsupported properties
*/
SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
/* ---------- LZMA Decoder state ---------- */
/* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case.
Num bits = log2((2^11 / 31) ^ 22) + 26 < 134 + 26 = 160; */
#define LZMA_REQUIRED_INPUT_MAX 20
typedef struct
{
/* Don't change this structure. ASM code can use it. */
CLzmaProps prop;
CLzmaProb *probs;
CLzmaProb *probs_1664;
Byte *dic;
SizeT dicBufSize;
SizeT dicPos;
const Byte *buf;
UInt32 range;
UInt32 code;
UInt32 processedPos;
UInt32 checkDicSize;
UInt32 reps[4];
UInt32 state;
UInt32 remainLen;
UInt32 numProbs;
unsigned tempBufSize;
Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
} CLzmaDec;
#define LzmaDec_Construct(p) { (p)->dic = NULL; (p)->probs = NULL; }
void LzmaDec_Init(CLzmaDec *p);
/* There are two types of LZMA streams:
- Stream with end mark. That end mark adds about 6 bytes to compressed size.
- Stream without end mark. You must know exact uncompressed size to decompress such stream. */
typedef enum
{
LZMA_FINISH_ANY, /* finish at any point */
LZMA_FINISH_END /* block must be finished at the end */
} ELzmaFinishMode;
/* ELzmaFinishMode has meaning only if the decoding reaches output limit !!!
You must use LZMA_FINISH_END, when you know that current output buffer
covers last bytes of block. In other cases you must use LZMA_FINISH_ANY.
If LZMA decoder sees end marker before reaching output limit, it returns SZ_OK,
and output value of destLen will be less than output buffer size limit.
You can check status result also.
You can use multiple checks to test data integrity after full decompression:
1) Check Result and "status" variable.
2) Check that output(destLen) = uncompressedSize, if you know real uncompressedSize.
3) Check that output(srcLen) = compressedSize, if you know real compressedSize.
You must use correct finish mode in that case. */
typedef enum
{
LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */
LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
LZMA_STATUS_NOT_FINISHED, /* stream was not finished */
LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */
} ELzmaStatus;
/* ELzmaStatus is used only as output value for function call */
/* ---------- Interfaces ---------- */
/* There are 3 levels of interfaces:
1) Dictionary Interface
2) Buffer Interface
3) One Call Interface
You can select any of these interfaces, but don't mix functions from different
groups for same object. */
/* There are two variants to allocate state for Dictionary Interface:
1) LzmaDec_Allocate / LzmaDec_Free
2) LzmaDec_AllocateProbs / LzmaDec_FreeProbs
You can use variant 2, if you set dictionary buffer manually.
For Buffer Interface you must always use variant 1.
LzmaDec_Allocate* can return:
SZ_OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
*/
SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc);
void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc);
SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc);
void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc);
/* ---------- Dictionary Interface ---------- */
/* You can use it, if you want to eliminate the overhead for data copying from
dictionary to some other external buffer.
You must work with CLzmaDec variables directly in this interface.
STEPS:
LzmaDec_Construct()
LzmaDec_Allocate()
for (each new stream)
{
LzmaDec_Init()
while (it needs more decompression)
{
LzmaDec_DecodeToDic()
use data from CLzmaDec::dic and update CLzmaDec::dicPos
}
}
LzmaDec_Free()
*/
/* LzmaDec_DecodeToDic
The decoding to internal dictionary buffer (CLzmaDec::dic).
You must manually update CLzmaDec::dicPos, if it reaches CLzmaDec::dicBufSize !!!
finishMode:
It has meaning only if the decoding reaches output limit (dicLimit).
LZMA_FINISH_ANY - Decode just dicLimit bytes.
LZMA_FINISH_END - Stream must be finished after dicLimit.
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
LZMA_STATUS_NEEDS_MORE_INPUT
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
SZ_ERROR_DATA - Data error
*/
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- Buffer Interface ---------- */
/* It's zlib-like interface.
See LzmaDec_DecodeToDic description for information about STEPS and return results,
but you must use LzmaDec_DecodeToBuf instead of LzmaDec_DecodeToDic and you don't need
to work with CLzmaDec variables manually.
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
LZMA_FINISH_ANY - Decode just destLen bytes.
LZMA_FINISH_END - Stream must be finished after (*destLen).
*/
SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- One Call Interface ---------- */
/* LzmaDecode
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
LZMA_FINISH_ANY - Decode just destLen bytes.
LZMA_FINISH_END - Stream must be finished after (*destLen).
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
*/
SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
ELzmaStatus *status, ISzAllocPtr alloc);
EXTERN_C_END
#endif

File diff suppressed because it is too large Load Diff

@ -0,0 +1,76 @@
/* LzmaEnc.h -- LZMA Encoder
2017-07-27 : Igor Pavlov : Public domain */
#ifndef __LZMA_ENC_H
#define __LZMA_ENC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define LZMA_PROPS_SIZE 5
typedef struct _CLzmaEncProps
{
int level; /* 0 <= level <= 9 */
UInt32 dictSize; /* (1 << 12) <= dictSize <= (1 << 27) for 32-bit version
(1 << 12) <= dictSize <= (3 << 29) for 64-bit version
default = (1 << 24) */
int lc; /* 0 <= lc <= 8, default = 3 */
int lp; /* 0 <= lp <= 4, default = 0 */
int pb; /* 0 <= pb <= 4, default = 2 */
int algo; /* 0 - fast, 1 - normal, default = 1 */
int fb; /* 5 <= fb <= 273, default = 32 */
int btMode; /* 0 - hashChain Mode, 1 - binTree mode - normal, default = 1 */
int numHashBytes; /* 2, 3 or 4, default = 4 */
UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */
unsigned writeEndMark; /* 0 - do not write EOPM, 1 - write EOPM, default = 0 */
int numThreads; /* 1 or 2, default = 2 */
UInt64 reduceSize; /* estimated size of data that will be compressed. default = (UInt64)(Int64)-1.
Encoder uses this value to reduce dictionary size */
} CLzmaEncProps;
void LzmaEncProps_Init(CLzmaEncProps *p);
void LzmaEncProps_Normalize(CLzmaEncProps *p);
UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2);
/* ---------- CLzmaEncHandle Interface ---------- */
/* LzmaEnc* functions can return the following exit codes:
SRes:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater in props
SZ_ERROR_WRITE - ISeqOutStream write callback error
SZ_ERROR_OUTPUT_EOF - output buffer overflow - version with (Byte *) output
SZ_ERROR_PROGRESS - some break from progress callback
SZ_ERROR_THREAD - error in multithreading functions (only for Mt version)
*/
typedef void * CLzmaEncHandle;
CLzmaEncHandle LzmaEnc_Create(ISzAllocPtr alloc);
void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props);
void LzmaEnc_SetDataSize(CLzmaEncHandle p, UInt64 expectedDataSiize);
SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *properties, SizeT *size);
unsigned LzmaEnc_IsWriteEndMark(CLzmaEncHandle p);
SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStream *outStream, ISeqInStream *inStream,
ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
int writeEndMark, ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
/* ---------- One Call Interface ---------- */
SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
EXTERN_C_END
#endif

@ -0,0 +1,40 @@
/* LzmaLib.c -- LZMA library wrapper
2015-06-13 : Igor Pavlov : Public domain */
#include "Alloc.h"
#include "LzmaDec.h"
#include "LzmaEnc.h"
#include "LzmaLib.h"
MY_STDAPI LzmaCompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t srcLen,
unsigned char *outProps, size_t *outPropsSize,
int level, /* 0 <= level <= 9, default = 5 */
unsigned dictSize, /* use (1 << N) or (3 << N). 4 KB < dictSize <= 128 MB */
int lc, /* 0 <= lc <= 8, default = 3 */
int lp, /* 0 <= lp <= 4, default = 0 */
int pb, /* 0 <= pb <= 4, default = 2 */
int fb, /* 5 <= fb <= 273, default = 32 */
int numThreads /* 1 or 2, default = 2 */
)
{
CLzmaEncProps props;
LzmaEncProps_Init(&props);
props.level = level;
props.dictSize = dictSize;
props.lc = lc;
props.lp = lp;
props.pb = pb;
props.fb = fb;
props.numThreads = numThreads;
return LzmaEncode(dest, destLen, src, srcLen, &props, outProps, outPropsSize, 0,
NULL, &g_Alloc, &g_Alloc);
}
MY_STDAPI LzmaUncompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t *srcLen,
const unsigned char *props, size_t propsSize)
{
ELzmaStatus status;
return LzmaDecode(dest, destLen, src, srcLen, props, (unsigned)propsSize, LZMA_FINISH_ANY, &status, &g_Alloc);
}

@ -0,0 +1,131 @@
/* LzmaLib.h -- LZMA library interface
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __LZMA_LIB_H
#define __LZMA_LIB_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define MY_STDAPI int MY_STD_CALL
#define LZMA_PROPS_SIZE 5
/*
RAM requirements for LZMA:
for compression: (dictSize * 11.5 + 6 MB) + state_size
for decompression: dictSize + state_size
state_size = (4 + (1.5 << (lc + lp))) KB
by default (lc=3, lp=0), state_size = 16 KB.
LZMA properties (5 bytes) format
Offset Size Description
0 1 lc, lp and pb in encoded form.
1 4 dictSize (little endian).
*/
/*
LzmaCompress
------------
outPropsSize -
In: the pointer to the size of outProps buffer; *outPropsSize = LZMA_PROPS_SIZE = 5.
Out: the pointer to the size of written properties in outProps buffer; *outPropsSize = LZMA_PROPS_SIZE = 5.
LZMA Encoder will use defult values for any parameter, if it is
-1 for any from: level, loc, lp, pb, fb, numThreads
0 for dictSize
level - compression level: 0 <= level <= 9;
level dictSize algo fb
0: 16 KB 0 32
1: 64 KB 0 32
2: 256 KB 0 32
3: 1 MB 0 32
4: 4 MB 0 32
5: 16 MB 1 32
6: 32 MB 1 32
7+: 64 MB 1 64
The default value for "level" is 5.
algo = 0 means fast method
algo = 1 means normal method
dictSize - The dictionary size in bytes. The maximum value is
128 MB = (1 << 27) bytes for 32-bit version
1 GB = (1 << 30) bytes for 64-bit version
The default value is 16 MB = (1 << 24) bytes.
It's recommended to use the dictionary that is larger than 4 KB and
that can be calculated as (1 << N) or (3 << N) sizes.
lc - The number of literal context bits (high bits of previous literal).
It can be in the range from 0 to 8. The default value is 3.
Sometimes lc=4 gives the gain for big files.
lp - The number of literal pos bits (low bits of current position for literals).
It can be in the range from 0 to 4. The default value is 0.
The lp switch is intended for periodical data when the period is equal to 2^lp.
For example, for 32-bit (4 bytes) periodical data you can use lp=2. Often it's
better to set lc=0, if you change lp switch.
pb - The number of pos bits (low bits of current position).
It can be in the range from 0 to 4. The default value is 2.
The pb switch is intended for periodical data when the period is equal 2^pb.
fb - Word size (the number of fast bytes).
It can be in the range from 5 to 273. The default value is 32.
Usually, a big number gives a little bit better compression ratio and
slower compression process.
numThreads - The number of thereads. 1 or 2. The default value is 2.
Fast mode (algo = 0) can use only 1 thread.
Out:
destLen - processed output size
Returns:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater
SZ_ERROR_OUTPUT_EOF - output buffer overflow
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
MY_STDAPI LzmaCompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t srcLen,
unsigned char *outProps, size_t *outPropsSize, /* *outPropsSize must be = 5 */
int level, /* 0 <= level <= 9, default = 5 */
unsigned dictSize, /* default = (1 << 24) */
int lc, /* 0 <= lc <= 8, default = 3 */
int lp, /* 0 <= lp <= 4, default = 0 */
int pb, /* 0 <= pb <= 4, default = 2 */
int fb, /* 5 <= fb <= 273, default = 32 */
int numThreads /* 1 or 2, default = 2 */
);
/*
LzmaUncompress
--------------
In:
dest - output data
destLen - output data size
src - input data
srcLen - input data size
Out:
destLen - processed output size
srcLen - processed input size
Returns:
SZ_OK - OK
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation arror
SZ_ERROR_UNSUPPORTED - Unsupported properties
SZ_ERROR_INPUT_EOF - it needs more bytes in input buffer (src)
*/
MY_STDAPI LzmaUncompress(unsigned char *dest, size_t *destLen, const unsigned char *src, SizeT *srcLen,
const unsigned char *props, size_t propsSize);
EXTERN_C_END
#endif

@ -0,0 +1,258 @@
/* LzmaUtil.c -- Test application for LZMA compression
2018-07-04 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "CpuArch.h"
#include "Alloc.h"
#include "7zFile.h"
#include "7zVersion.h"
#include "LzmaDec.h"
#include "LzmaEnc.h"
static const char * const kCantReadMessage = "Can not read input file";
static const char * const kCantWriteMessage = "Can not write output file";
static const char * const kCantAllocateMessage = "Can not allocate memory";
static const char * const kDataErrorMessage = "Data error";
static void PrintHelp(char *buffer)
{
strcat(buffer,
"\nLZMA-C " MY_VERSION_CPU " : " MY_COPYRIGHT_DATE "\n\n"
"Usage: lzma <e|d> inputFile outputFile\n"
" e: encode file\n"
" d: decode file\n");
}
static int PrintError(char *buffer, const char *message)
{
strcat(buffer, "\nError: ");
strcat(buffer, message);
strcat(buffer, "\n");
return 1;
}
static int PrintErrorNumber(char *buffer, SRes val)
{
sprintf(buffer + strlen(buffer), "\nError code: %x\n", (unsigned)val);
return 1;
}
static int PrintUserError(char *buffer)
{
return PrintError(buffer, "Incorrect command");
}
#define IN_BUF_SIZE (1 << 16)
#define OUT_BUF_SIZE (1 << 16)
static SRes Decode2(CLzmaDec *state, ISeqOutStream *outStream, ISeqInStream *inStream,
UInt64 unpackSize)
{
int thereIsSize = (unpackSize != (UInt64)(Int64)-1);
Byte inBuf[IN_BUF_SIZE];
Byte outBuf[OUT_BUF_SIZE];
size_t inPos = 0, inSize = 0, outPos = 0;
LzmaDec_Init(state);
for (;;)
{
if (inPos == inSize)
{
inSize = IN_BUF_SIZE;
RINOK(inStream->Read(inStream, inBuf, &inSize));
inPos = 0;
}
{
SRes res;
SizeT inProcessed = inSize - inPos;
SizeT outProcessed = OUT_BUF_SIZE - outPos;
ELzmaFinishMode finishMode = LZMA_FINISH_ANY;
ELzmaStatus status;
if (thereIsSize && outProcessed > unpackSize)
{
outProcessed = (SizeT)unpackSize;
finishMode = LZMA_FINISH_END;
}
res = LzmaDec_DecodeToBuf(state, outBuf + outPos, &outProcessed,
inBuf + inPos, &inProcessed, finishMode, &status);
inPos += inProcessed;
outPos += outProcessed;
unpackSize -= outProcessed;
if (outStream)
if (outStream->Write(outStream, outBuf, outPos) != outPos)
return SZ_ERROR_WRITE;
outPos = 0;
if (res != SZ_OK || (thereIsSize && unpackSize == 0))
return res;
if (inProcessed == 0 && outProcessed == 0)
{
if (thereIsSize || status != LZMA_STATUS_FINISHED_WITH_MARK)
return SZ_ERROR_DATA;
return res;
}
}
}
}
static SRes Decode(ISeqOutStream *outStream, ISeqInStream *inStream)
{
UInt64 unpackSize;
int i;
SRes res = 0;
CLzmaDec state;
/* header: 5 bytes of LZMA properties and 8 bytes of uncompressed size */
unsigned char header[LZMA_PROPS_SIZE + 8];
/* Read and parse header */
RINOK(SeqInStream_Read(inStream, header, sizeof(header)));
unpackSize = 0;
for (i = 0; i < 8; i++)
unpackSize += (UInt64)header[LZMA_PROPS_SIZE + i] << (i * 8);
LzmaDec_Construct(&state);
RINOK(LzmaDec_Allocate(&state, header, LZMA_PROPS_SIZE, &g_Alloc));
res = Decode2(&state, outStream, inStream, unpackSize);
LzmaDec_Free(&state, &g_Alloc);
return res;
}
static SRes Encode(ISeqOutStream *outStream, ISeqInStream *inStream, UInt64 fileSize, char *rs)
{
CLzmaEncHandle enc;
SRes res;
CLzmaEncProps props;
UNUSED_VAR(rs);
enc = LzmaEnc_Create(&g_Alloc);
if (enc == 0)
return SZ_ERROR_MEM;
LzmaEncProps_Init(&props);
res = LzmaEnc_SetProps(enc, &props);
if (res == SZ_OK)
{
Byte header[LZMA_PROPS_SIZE + 8];
size_t headerSize = LZMA_PROPS_SIZE;
int i;
res = LzmaEnc_WriteProperties(enc, header, &headerSize);
for (i = 0; i < 8; i++)
header[headerSize++] = (Byte)(fileSize >> (8 * i));
if (outStream->Write(outStream, header, headerSize) != headerSize)
res = SZ_ERROR_WRITE;
else
{
if (res == SZ_OK)
res = LzmaEnc_Encode(enc, outStream, inStream, NULL, &g_Alloc, &g_Alloc);
}
}
LzmaEnc_Destroy(enc, &g_Alloc, &g_Alloc);
return res;
}
static int main2(int numArgs, const char *args[], char *rs)
{
CFileSeqInStream inStream;
CFileOutStream outStream;
char c;
int res;
int encodeMode;
BoolInt useOutFile = False;
FileSeqInStream_CreateVTable(&inStream);
File_Construct(&inStream.file);
FileOutStream_CreateVTable(&outStream);
File_Construct(&outStream.file);
if (numArgs == 1)
{
PrintHelp(rs);
return 0;
}
if (numArgs < 3 || numArgs > 4 || strlen(args[1]) != 1)
return PrintUserError(rs);
c = args[1][0];
encodeMode = (c == 'e' || c == 'E');
if (!encodeMode && c != 'd' && c != 'D')
return PrintUserError(rs);
{
size_t t4 = sizeof(UInt32);
size_t t8 = sizeof(UInt64);
if (t4 != 4 || t8 != 8)
return PrintError(rs, "Incorrect UInt32 or UInt64");
}
if (InFile_Open(&inStream.file, args[2]) != 0)
return PrintError(rs, "Can not open input file");
if (numArgs > 3)
{
useOutFile = True;
if (OutFile_Open(&outStream.file, args[3]) != 0)
return PrintError(rs, "Can not open output file");
}
else if (encodeMode)
PrintUserError(rs);
if (encodeMode)
{
UInt64 fileSize;
File_GetLength(&inStream.file, &fileSize);
res = Encode(&outStream.vt, &inStream.vt, fileSize, rs);
}
else
{
res = Decode(&outStream.vt, useOutFile ? &inStream.vt : NULL);
}
if (useOutFile)
File_Close(&outStream.file);
File_Close(&inStream.file);
if (res != SZ_OK)
{
if (res == SZ_ERROR_MEM)
return PrintError(rs, kCantAllocateMessage);
else if (res == SZ_ERROR_DATA)
return PrintError(rs, kDataErrorMessage);
else if (res == SZ_ERROR_WRITE)
return PrintError(rs, kCantWriteMessage);
else if (res == SZ_ERROR_READ)
return PrintError(rs, kCantReadMessage);
return PrintErrorNumber(rs, res);
}
return 0;
}
int MY_CDECL main(int numArgs, const char *args[])
{
char rs[800] = { 0 };
int res = main2(numArgs, args, rs);
fputs(rs, stdout);
return res;
}

@ -0,0 +1,85 @@
/* Ppmd.h -- PPMD codec common code
2017-04-03 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#ifndef __PPMD_H
#define __PPMD_H
#include "CpuArch.h"
EXTERN_C_BEGIN
#ifdef MY_CPU_32BIT
#define PPMD_32BIT
#endif
#define PPMD_INT_BITS 7
#define PPMD_PERIOD_BITS 7
#define PPMD_BIN_SCALE (1 << (PPMD_INT_BITS + PPMD_PERIOD_BITS))
#define PPMD_GET_MEAN_SPEC(summ, shift, round) (((summ) + (1 << ((shift) - (round)))) >> (shift))
#define PPMD_GET_MEAN(summ) PPMD_GET_MEAN_SPEC((summ), PPMD_PERIOD_BITS, 2)
#define PPMD_UPDATE_PROB_0(prob) ((prob) + (1 << PPMD_INT_BITS) - PPMD_GET_MEAN(prob))
#define PPMD_UPDATE_PROB_1(prob) ((prob) - PPMD_GET_MEAN(prob))
#define PPMD_N1 4
#define PPMD_N2 4
#define PPMD_N3 4
#define PPMD_N4 ((128 + 3 - 1 * PPMD_N1 - 2 * PPMD_N2 - 3 * PPMD_N3) / 4)
#define PPMD_NUM_INDEXES (PPMD_N1 + PPMD_N2 + PPMD_N3 + PPMD_N4)
#pragma pack(push, 1)
/* Most compilers works OK here even without #pragma pack(push, 1), but some GCC compilers need it. */
/* SEE-contexts for PPM-contexts with masked symbols */
typedef struct
{
UInt16 Summ; /* Freq */
Byte Shift; /* Speed of Freq change; low Shift is for fast change */
Byte Count; /* Count to next change of Shift */
} CPpmd_See;
#define Ppmd_See_Update(p) if ((p)->Shift < PPMD_PERIOD_BITS && --(p)->Count == 0) \
{ (p)->Summ <<= 1; (p)->Count = (Byte)(3 << (p)->Shift++); }
typedef struct
{
Byte Symbol;
Byte Freq;
UInt16 SuccessorLow;
UInt16 SuccessorHigh;
} CPpmd_State;
#pragma pack(pop)
typedef
#ifdef PPMD_32BIT
CPpmd_State *
#else
UInt32
#endif
CPpmd_State_Ref;
typedef
#ifdef PPMD_32BIT
void *
#else
UInt32
#endif
CPpmd_Void_Ref;
typedef
#ifdef PPMD_32BIT
Byte *
#else
UInt32
#endif
CPpmd_Byte_Ref;
#define PPMD_SetAllBitsIn256Bytes(p) \
{ size_t z; for (z = 0; z < 256 / sizeof(p[0]); z += 8) { \
p[z+7] = p[z+6] = p[z+5] = p[z+4] = p[z+3] = p[z+2] = p[z+1] = p[z+0] = ~(size_t)0; }}
EXTERN_C_END
#endif

@ -0,0 +1,712 @@
/* Ppmd7.c -- PPMdH codec
2018-07-04 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Precomp.h"
#include <string.h>
#include "Ppmd7.h"
const Byte PPMD7_kExpEscape[16] = { 25, 14, 9, 7, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2 };
static const UInt16 kInitBinEsc[] = { 0x3CDD, 0x1F3F, 0x59BF, 0x48F3, 0x64A1, 0x5ABC, 0x6632, 0x6051};
#define MAX_FREQ 124
#define UNIT_SIZE 12
#define U2B(nu) ((UInt32)(nu) * UNIT_SIZE)
#define U2I(nu) (p->Units2Indx[(size_t)(nu) - 1])
#define I2U(indx) (p->Indx2Units[indx])
#ifdef PPMD_32BIT
#define REF(ptr) (ptr)
#else
#define REF(ptr) ((UInt32)((Byte *)(ptr) - (p)->Base))
#endif
#define STATS_REF(ptr) ((CPpmd_State_Ref)REF(ptr))
#define CTX(ref) ((CPpmd7_Context *)Ppmd7_GetContext(p, ref))
#define STATS(ctx) Ppmd7_GetStats(p, ctx)
#define ONE_STATE(ctx) Ppmd7Context_OneState(ctx)
#define SUFFIX(ctx) CTX((ctx)->Suffix)
typedef CPpmd7_Context * CTX_PTR;
struct CPpmd7_Node_;
typedef
#ifdef PPMD_32BIT
struct CPpmd7_Node_ *
#else
UInt32
#endif
CPpmd7_Node_Ref;
typedef struct CPpmd7_Node_
{
UInt16 Stamp; /* must be at offset 0 as CPpmd7_Context::NumStats. Stamp=0 means free */
UInt16 NU;
CPpmd7_Node_Ref Next; /* must be at offset >= 4 */
CPpmd7_Node_Ref Prev;
} CPpmd7_Node;
#ifdef PPMD_32BIT
#define NODE(ptr) (ptr)
#else
#define NODE(offs) ((CPpmd7_Node *)(p->Base + (offs)))
#endif
void Ppmd7_Construct(CPpmd7 *p)
{
unsigned i, k, m;
p->Base = 0;
for (i = 0, k = 0; i < PPMD_NUM_INDEXES; i++)
{
unsigned step = (i >= 12 ? 4 : (i >> 2) + 1);
do { p->Units2Indx[k++] = (Byte)i; } while (--step);
p->Indx2Units[i] = (Byte)k;
}
p->NS2BSIndx[0] = (0 << 1);
p->NS2BSIndx[1] = (1 << 1);
memset(p->NS2BSIndx + 2, (2 << 1), 9);
memset(p->NS2BSIndx + 11, (3 << 1), 256 - 11);
for (i = 0; i < 3; i++)
p->NS2Indx[i] = (Byte)i;
for (m = i, k = 1; i < 256; i++)
{
p->NS2Indx[i] = (Byte)m;
if (--k == 0)
k = (++m) - 2;
}
memset(p->HB2Flag, 0, 0x40);
memset(p->HB2Flag + 0x40, 8, 0x100 - 0x40);
}
void Ppmd7_Free(CPpmd7 *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->Base);
p->Size = 0;
p->Base = 0;
}
BoolInt Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAllocPtr alloc)
{
if (!p->Base || p->Size != size)
{
size_t size2;
Ppmd7_Free(p, alloc);
size2 = 0
#ifndef PPMD_32BIT
+ UNIT_SIZE
#endif
;
p->AlignOffset =
#ifdef PPMD_32BIT
(4 - size) & 3;
#else
4 - (size & 3);
#endif
if ((p->Base = (Byte *)ISzAlloc_Alloc(alloc, p->AlignOffset + size + size2)) == 0)
return False;
p->Size = size;
}
return True;
}
static void InsertNode(CPpmd7 *p, void *node, unsigned indx)
{
*((CPpmd_Void_Ref *)node) = p->FreeList[indx];
p->FreeList[indx] = REF(node);
}
static void *RemoveNode(CPpmd7 *p, unsigned indx)
{
CPpmd_Void_Ref *node = (CPpmd_Void_Ref *)Ppmd7_GetPtr(p, p->FreeList[indx]);
p->FreeList[indx] = *node;
return node;
}
static void SplitBlock(CPpmd7 *p, void *ptr, unsigned oldIndx, unsigned newIndx)
{
unsigned i, nu = I2U(oldIndx) - I2U(newIndx);
ptr = (Byte *)ptr + U2B(I2U(newIndx));
if (I2U(i = U2I(nu)) != nu)
{
unsigned k = I2U(--i);
InsertNode(p, ((Byte *)ptr) + U2B(k), nu - k - 1);
}
InsertNode(p, ptr, i);
}
static void GlueFreeBlocks(CPpmd7 *p)
{
#ifdef PPMD_32BIT
CPpmd7_Node headItem;
CPpmd7_Node_Ref head = &headItem;
#else
CPpmd7_Node_Ref head = p->AlignOffset + p->Size;
#endif
CPpmd7_Node_Ref n = head;
unsigned i;
p->GlueCount = 255;
/* create doubly-linked list of free blocks */
for (i = 0; i < PPMD_NUM_INDEXES; i++)
{
UInt16 nu = I2U(i);
CPpmd7_Node_Ref next = (CPpmd7_Node_Ref)p->FreeList[i];
p->FreeList[i] = 0;
while (next != 0)
{
CPpmd7_Node *node = NODE(next);
node->Next = n;
n = NODE(n)->Prev = next;
next = *(const CPpmd7_Node_Ref *)node;
node->Stamp = 0;
node->NU = (UInt16)nu;
}
}
NODE(head)->Stamp = 1;
NODE(head)->Next = n;
NODE(n)->Prev = head;
if (p->LoUnit != p->HiUnit)
((CPpmd7_Node *)p->LoUnit)->Stamp = 1;
/* Glue free blocks */
while (n != head)
{
CPpmd7_Node *node = NODE(n);
UInt32 nu = (UInt32)node->NU;
for (;;)
{
CPpmd7_Node *node2 = NODE(n) + nu;
nu += node2->NU;
if (node2->Stamp != 0 || nu >= 0x10000)
break;
NODE(node2->Prev)->Next = node2->Next;
NODE(node2->Next)->Prev = node2->Prev;
node->NU = (UInt16)nu;
}
n = node->Next;
}
/* Fill lists of free blocks */
for (n = NODE(head)->Next; n != head;)
{
CPpmd7_Node *node = NODE(n);
unsigned nu;
CPpmd7_Node_Ref next = node->Next;
for (nu = node->NU; nu > 128; nu -= 128, node += 128)
InsertNode(p, node, PPMD_NUM_INDEXES - 1);
if (I2U(i = U2I(nu)) != nu)
{
unsigned k = I2U(--i);
InsertNode(p, node + k, nu - k - 1);
}
InsertNode(p, node, i);
n = next;
}
}
static void *AllocUnitsRare(CPpmd7 *p, unsigned indx)
{
unsigned i;
void *retVal;
if (p->GlueCount == 0)
{
GlueFreeBlocks(p);
if (p->FreeList[indx] != 0)
return RemoveNode(p, indx);
}
i = indx;
do
{
if (++i == PPMD_NUM_INDEXES)
{
UInt32 numBytes = U2B(I2U(indx));
p->GlueCount--;
return ((UInt32)(p->UnitsStart - p->Text) > numBytes) ? (p->UnitsStart -= numBytes) : (NULL);
}
}
while (p->FreeList[i] == 0);
retVal = RemoveNode(p, i);
SplitBlock(p, retVal, i, indx);
return retVal;
}
static void *AllocUnits(CPpmd7 *p, unsigned indx)
{
UInt32 numBytes;
if (p->FreeList[indx] != 0)
return RemoveNode(p, indx);
numBytes = U2B(I2U(indx));
if (numBytes <= (UInt32)(p->HiUnit - p->LoUnit))
{
void *retVal = p->LoUnit;
p->LoUnit += numBytes;
return retVal;
}
return AllocUnitsRare(p, indx);
}
#define MyMem12Cpy(dest, src, num) \
{ UInt32 *d = (UInt32 *)dest; const UInt32 *s = (const UInt32 *)src; UInt32 n = num; \
do { d[0] = s[0]; d[1] = s[1]; d[2] = s[2]; s += 3; d += 3; } while (--n); }
static void *ShrinkUnits(CPpmd7 *p, void *oldPtr, unsigned oldNU, unsigned newNU)
{
unsigned i0 = U2I(oldNU);
unsigned i1 = U2I(newNU);
if (i0 == i1)
return oldPtr;
if (p->FreeList[i1] != 0)
{
void *ptr = RemoveNode(p, i1);
MyMem12Cpy(ptr, oldPtr, newNU);
InsertNode(p, oldPtr, i0);
return ptr;
}
SplitBlock(p, oldPtr, i0, i1);
return oldPtr;
}
#define SUCCESSOR(p) ((CPpmd_Void_Ref)((p)->SuccessorLow | ((UInt32)(p)->SuccessorHigh << 16)))
static void SetSuccessor(CPpmd_State *p, CPpmd_Void_Ref v)
{
(p)->SuccessorLow = (UInt16)((UInt32)(v) & 0xFFFF);
(p)->SuccessorHigh = (UInt16)(((UInt32)(v) >> 16) & 0xFFFF);
}
static void RestartModel(CPpmd7 *p)
{
unsigned i, k, m;
memset(p->FreeList, 0, sizeof(p->FreeList));
p->Text = p->Base + p->AlignOffset;
p->HiUnit = p->Text + p->Size;
p->LoUnit = p->UnitsStart = p->HiUnit - p->Size / 8 / UNIT_SIZE * 7 * UNIT_SIZE;
p->GlueCount = 0;
p->OrderFall = p->MaxOrder;
p->RunLength = p->InitRL = -(Int32)((p->MaxOrder < 12) ? p->MaxOrder : 12) - 1;
p->PrevSuccess = 0;
p->MinContext = p->MaxContext = (CTX_PTR)(p->HiUnit -= UNIT_SIZE); /* AllocContext(p); */
p->MinContext->Suffix = 0;
p->MinContext->NumStats = 256;
p->MinContext->SummFreq = 256 + 1;
p->FoundState = (CPpmd_State *)p->LoUnit; /* AllocUnits(p, PPMD_NUM_INDEXES - 1); */
p->LoUnit += U2B(256 / 2);
p->MinContext->Stats = REF(p->FoundState);
for (i = 0; i < 256; i++)
{
CPpmd_State *s = &p->FoundState[i];
s->Symbol = (Byte)i;
s->Freq = 1;
SetSuccessor(s, 0);
}
for (i = 0; i < 128; i++)
for (k = 0; k < 8; k++)
{
UInt16 *dest = p->BinSumm[i] + k;
UInt16 val = (UInt16)(PPMD_BIN_SCALE - kInitBinEsc[k] / (i + 2));
for (m = 0; m < 64; m += 8)
dest[m] = val;
}
for (i = 0; i < 25; i++)
for (k = 0; k < 16; k++)
{
CPpmd_See *s = &p->See[i][k];
s->Summ = (UInt16)((5 * i + 10) << (s->Shift = PPMD_PERIOD_BITS - 4));
s->Count = 4;
}
}
void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder)
{
p->MaxOrder = maxOrder;
RestartModel(p);
p->DummySee.Shift = PPMD_PERIOD_BITS;
p->DummySee.Summ = 0; /* unused */
p->DummySee.Count = 64; /* unused */
}
static CTX_PTR CreateSuccessors(CPpmd7 *p, BoolInt skip)
{
CPpmd_State upState;
CTX_PTR c = p->MinContext;
CPpmd_Byte_Ref upBranch = (CPpmd_Byte_Ref)SUCCESSOR(p->FoundState);
CPpmd_State *ps[PPMD7_MAX_ORDER];
unsigned numPs = 0;
if (!skip)
ps[numPs++] = p->FoundState;
while (c->Suffix)
{
CPpmd_Void_Ref successor;
CPpmd_State *s;
c = SUFFIX(c);
if (c->NumStats != 1)
{
for (s = STATS(c); s->Symbol != p->FoundState->Symbol; s++);
}
else
s = ONE_STATE(c);
successor = SUCCESSOR(s);
if (successor != upBranch)
{
c = CTX(successor);
if (numPs == 0)
return c;
break;
}
ps[numPs++] = s;
}
upState.Symbol = *(const Byte *)Ppmd7_GetPtr(p, upBranch);
SetSuccessor(&upState, upBranch + 1);
if (c->NumStats == 1)
upState.Freq = ONE_STATE(c)->Freq;
else
{
UInt32 cf, s0;
CPpmd_State *s;
for (s = STATS(c); s->Symbol != upState.Symbol; s++);
cf = s->Freq - 1;
s0 = c->SummFreq - c->NumStats - cf;
upState.Freq = (Byte)(1 + ((2 * cf <= s0) ? (5 * cf > s0) : ((2 * cf + 3 * s0 - 1) / (2 * s0))));
}
do
{
/* Create Child */
CTX_PTR c1; /* = AllocContext(p); */
if (p->HiUnit != p->LoUnit)
c1 = (CTX_PTR)(p->HiUnit -= UNIT_SIZE);
else if (p->FreeList[0] != 0)
c1 = (CTX_PTR)RemoveNode(p, 0);
else
{
c1 = (CTX_PTR)AllocUnitsRare(p, 0);
if (!c1)
return NULL;
}
c1->NumStats = 1;
*ONE_STATE(c1) = upState;
c1->Suffix = REF(c);
SetSuccessor(ps[--numPs], REF(c1));
c = c1;
}
while (numPs != 0);
return c;
}
static void SwapStates(CPpmd_State *t1, CPpmd_State *t2)
{
CPpmd_State tmp = *t1;
*t1 = *t2;
*t2 = tmp;
}
static void UpdateModel(CPpmd7 *p)
{
CPpmd_Void_Ref successor, fSuccessor = SUCCESSOR(p->FoundState);
CTX_PTR c;
unsigned s0, ns;
if (p->FoundState->Freq < MAX_FREQ / 4 && p->MinContext->Suffix != 0)
{
c = SUFFIX(p->MinContext);
if (c->NumStats == 1)
{
CPpmd_State *s = ONE_STATE(c);
if (s->Freq < 32)
s->Freq++;
}
else
{
CPpmd_State *s = STATS(c);
if (s->Symbol != p->FoundState->Symbol)
{
do { s++; } while (s->Symbol != p->FoundState->Symbol);
if (s[0].Freq >= s[-1].Freq)
{
SwapStates(&s[0], &s[-1]);
s--;
}
}
if (s->Freq < MAX_FREQ - 9)
{
s->Freq += 2;
c->SummFreq += 2;
}
}
}
if (p->OrderFall == 0)
{
p->MinContext = p->MaxContext = CreateSuccessors(p, True);
if (p->MinContext == 0)
{
RestartModel(p);
return;
}
SetSuccessor(p->FoundState, REF(p->MinContext));
return;
}
*p->Text++ = p->FoundState->Symbol;
successor = REF(p->Text);
if (p->Text >= p->UnitsStart)
{
RestartModel(p);
return;
}
if (fSuccessor)
{
if (fSuccessor <= successor)
{
CTX_PTR cs = CreateSuccessors(p, False);
if (cs == NULL)
{
RestartModel(p);
return;
}
fSuccessor = REF(cs);
}
if (--p->OrderFall == 0)
{
successor = fSuccessor;
p->Text -= (p->MaxContext != p->MinContext);
}
}
else
{
SetSuccessor(p->FoundState, successor);
fSuccessor = REF(p->MinContext);
}
s0 = p->MinContext->SummFreq - (ns = p->MinContext->NumStats) - (p->FoundState->Freq - 1);
for (c = p->MaxContext; c != p->MinContext; c = SUFFIX(c))
{
unsigned ns1;
UInt32 cf, sf;
if ((ns1 = c->NumStats) != 1)
{
if ((ns1 & 1) == 0)
{
/* Expand for one UNIT */
unsigned oldNU = ns1 >> 1;
unsigned i = U2I(oldNU);
if (i != U2I((size_t)oldNU + 1))
{
void *ptr = AllocUnits(p, i + 1);
void *oldPtr;
if (!ptr)
{
RestartModel(p);
return;
}
oldPtr = STATS(c);
MyMem12Cpy(ptr, oldPtr, oldNU);
InsertNode(p, oldPtr, i);
c->Stats = STATS_REF(ptr);
}
}
c->SummFreq = (UInt16)(c->SummFreq + (2 * ns1 < ns) + 2 * ((4 * ns1 <= ns) & (c->SummFreq <= 8 * ns1)));
}
else
{
CPpmd_State *s = (CPpmd_State*)AllocUnits(p, 0);
if (!s)
{
RestartModel(p);
return;
}
*s = *ONE_STATE(c);
c->Stats = REF(s);
if (s->Freq < MAX_FREQ / 4 - 1)
s->Freq <<= 1;
else
s->Freq = MAX_FREQ - 4;
c->SummFreq = (UInt16)(s->Freq + p->InitEsc + (ns > 3));
}
cf = 2 * (UInt32)p->FoundState->Freq * (c->SummFreq + 6);
sf = (UInt32)s0 + c->SummFreq;
if (cf < 6 * sf)
{
cf = 1 + (cf > sf) + (cf >= 4 * sf);
c->SummFreq += 3;
}
else
{
cf = 4 + (cf >= 9 * sf) + (cf >= 12 * sf) + (cf >= 15 * sf);
c->SummFreq = (UInt16)(c->SummFreq + cf);
}
{
CPpmd_State *s = STATS(c) + ns1;
SetSuccessor(s, successor);
s->Symbol = p->FoundState->Symbol;
s->Freq = (Byte)cf;
c->NumStats = (UInt16)(ns1 + 1);
}
}
p->MaxContext = p->MinContext = CTX(fSuccessor);
}
static void Rescale(CPpmd7 *p)
{
unsigned i, adder, sumFreq, escFreq;
CPpmd_State *stats = STATS(p->MinContext);
CPpmd_State *s = p->FoundState;
{
CPpmd_State tmp = *s;
for (; s != stats; s--)
s[0] = s[-1];
*s = tmp;
}
escFreq = p->MinContext->SummFreq - s->Freq;
s->Freq += 4;
adder = (p->OrderFall != 0);
s->Freq = (Byte)((s->Freq + adder) >> 1);
sumFreq = s->Freq;
i = p->MinContext->NumStats - 1;
do
{
escFreq -= (++s)->Freq;
s->Freq = (Byte)((s->Freq + adder) >> 1);
sumFreq += s->Freq;
if (s[0].Freq > s[-1].Freq)
{
CPpmd_State *s1 = s;
CPpmd_State tmp = *s1;
do
s1[0] = s1[-1];
while (--s1 != stats && tmp.Freq > s1[-1].Freq);
*s1 = tmp;
}
}
while (--i);
if (s->Freq == 0)
{
unsigned numStats = p->MinContext->NumStats;
unsigned n0, n1;
do { i++; } while ((--s)->Freq == 0);
escFreq += i;
p->MinContext->NumStats = (UInt16)(p->MinContext->NumStats - i);
if (p->MinContext->NumStats == 1)
{
CPpmd_State tmp = *stats;
do
{
tmp.Freq = (Byte)(tmp.Freq - (tmp.Freq >> 1));
escFreq >>= 1;
}
while (escFreq > 1);
InsertNode(p, stats, U2I(((numStats + 1) >> 1)));
*(p->FoundState = ONE_STATE(p->MinContext)) = tmp;
return;
}
n0 = (numStats + 1) >> 1;
n1 = (p->MinContext->NumStats + 1) >> 1;
if (n0 != n1)
p->MinContext->Stats = STATS_REF(ShrinkUnits(p, stats, n0, n1));
}
p->MinContext->SummFreq = (UInt16)(sumFreq + escFreq - (escFreq >> 1));
p->FoundState = STATS(p->MinContext);
}
CPpmd_See *Ppmd7_MakeEscFreq(CPpmd7 *p, unsigned numMasked, UInt32 *escFreq)
{
CPpmd_See *see;
unsigned nonMasked = p->MinContext->NumStats - numMasked;
if (p->MinContext->NumStats != 256)
{
see = p->See[(unsigned)p->NS2Indx[(size_t)nonMasked - 1]] +
(nonMasked < (unsigned)SUFFIX(p->MinContext)->NumStats - p->MinContext->NumStats) +
2 * (unsigned)(p->MinContext->SummFreq < 11 * p->MinContext->NumStats) +
4 * (unsigned)(numMasked > nonMasked) +
p->HiBitsFlag;
{
unsigned r = (see->Summ >> see->Shift);
see->Summ = (UInt16)(see->Summ - r);
*escFreq = r + (r == 0);
}
}
else
{
see = &p->DummySee;
*escFreq = 1;
}
return see;
}
static void NextContext(CPpmd7 *p)
{
CTX_PTR c = CTX(SUCCESSOR(p->FoundState));
if (p->OrderFall == 0 && (Byte *)c > p->Text)
p->MinContext = p->MaxContext = c;
else
UpdateModel(p);
}
void Ppmd7_Update1(CPpmd7 *p)
{
CPpmd_State *s = p->FoundState;
s->Freq += 4;
p->MinContext->SummFreq += 4;
if (s[0].Freq > s[-1].Freq)
{
SwapStates(&s[0], &s[-1]);
p->FoundState = --s;
if (s->Freq > MAX_FREQ)
Rescale(p);
}
NextContext(p);
}
void Ppmd7_Update1_0(CPpmd7 *p)
{
p->PrevSuccess = (2 * p->FoundState->Freq > p->MinContext->SummFreq);
p->RunLength += p->PrevSuccess;
p->MinContext->SummFreq += 4;
if ((p->FoundState->Freq += 4) > MAX_FREQ)
Rescale(p);
NextContext(p);
}
void Ppmd7_UpdateBin(CPpmd7 *p)
{
p->FoundState->Freq = (Byte)(p->FoundState->Freq + (p->FoundState->Freq < 128 ? 1: 0));
p->PrevSuccess = 1;
p->RunLength++;
NextContext(p);
}
void Ppmd7_Update2(CPpmd7 *p)
{
p->MinContext->SummFreq += 4;
if ((p->FoundState->Freq += 4) > MAX_FREQ)
Rescale(p);
p->RunLength = p->InitRL;
UpdateModel(p);
}

@ -0,0 +1,142 @@
/* Ppmd7.h -- PPMdH compression codec
2018-07-04 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
/* This code supports virtual RangeDecoder and includes the implementation
of RangeCoder from 7z, instead of RangeCoder from original PPMd var.H.
If you need the compatibility with original PPMd var.H, you can use external RangeDecoder */
#ifndef __PPMD7_H
#define __PPMD7_H
#include "Ppmd.h"
EXTERN_C_BEGIN
#define PPMD7_MIN_ORDER 2
#define PPMD7_MAX_ORDER 64
#define PPMD7_MIN_MEM_SIZE (1 << 11)
#define PPMD7_MAX_MEM_SIZE (0xFFFFFFFF - 12 * 3)
struct CPpmd7_Context_;
typedef
#ifdef PPMD_32BIT
struct CPpmd7_Context_ *
#else
UInt32
#endif
CPpmd7_Context_Ref;
typedef struct CPpmd7_Context_
{
UInt16 NumStats;
UInt16 SummFreq;
CPpmd_State_Ref Stats;
CPpmd7_Context_Ref Suffix;
} CPpmd7_Context;
#define Ppmd7Context_OneState(p) ((CPpmd_State *)&(p)->SummFreq)
typedef struct
{
CPpmd7_Context *MinContext, *MaxContext;
CPpmd_State *FoundState;
unsigned OrderFall, InitEsc, PrevSuccess, MaxOrder, HiBitsFlag;
Int32 RunLength, InitRL; /* must be 32-bit at least */
UInt32 Size;
UInt32 GlueCount;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
UInt32 AlignOffset;
Byte Indx2Units[PPMD_NUM_INDEXES];
Byte Units2Indx[128];
CPpmd_Void_Ref FreeList[PPMD_NUM_INDEXES];
Byte NS2Indx[256], NS2BSIndx[256], HB2Flag[256];
CPpmd_See DummySee, See[25][16];
UInt16 BinSumm[128][64];
} CPpmd7;
void Ppmd7_Construct(CPpmd7 *p);
BoolInt Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAllocPtr alloc);
void Ppmd7_Free(CPpmd7 *p, ISzAllocPtr alloc);
void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder);
#define Ppmd7_WasAllocated(p) ((p)->Base != NULL)
/* ---------- Internal Functions ---------- */
extern const Byte PPMD7_kExpEscape[16];
#ifdef PPMD_32BIT
#define Ppmd7_GetPtr(p, ptr) (ptr)
#define Ppmd7_GetContext(p, ptr) (ptr)
#define Ppmd7_GetStats(p, ctx) ((ctx)->Stats)
#else
#define Ppmd7_GetPtr(p, offs) ((void *)((p)->Base + (offs)))
#define Ppmd7_GetContext(p, offs) ((CPpmd7_Context *)Ppmd7_GetPtr((p), (offs)))
#define Ppmd7_GetStats(p, ctx) ((CPpmd_State *)Ppmd7_GetPtr((p), ((ctx)->Stats)))
#endif
void Ppmd7_Update1(CPpmd7 *p);
void Ppmd7_Update1_0(CPpmd7 *p);
void Ppmd7_Update2(CPpmd7 *p);
void Ppmd7_UpdateBin(CPpmd7 *p);
#define Ppmd7_GetBinSumm(p) \
&p->BinSumm[(size_t)(unsigned)Ppmd7Context_OneState(p->MinContext)->Freq - 1][p->PrevSuccess + \
p->NS2BSIndx[(size_t)Ppmd7_GetContext(p, p->MinContext->Suffix)->NumStats - 1] + \
(p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol]) + \
2 * p->HB2Flag[(unsigned)Ppmd7Context_OneState(p->MinContext)->Symbol] + \
((p->RunLength >> 26) & 0x20)]
CPpmd_See *Ppmd7_MakeEscFreq(CPpmd7 *p, unsigned numMasked, UInt32 *scale);
/* ---------- Decode ---------- */
typedef struct IPpmd7_RangeDec IPpmd7_RangeDec;
struct IPpmd7_RangeDec
{
UInt32 (*GetThreshold)(const IPpmd7_RangeDec *p, UInt32 total);
void (*Decode)(const IPpmd7_RangeDec *p, UInt32 start, UInt32 size);
UInt32 (*DecodeBit)(const IPpmd7_RangeDec *p, UInt32 size0);
};
typedef struct
{
IPpmd7_RangeDec vt;
UInt32 Range;
UInt32 Code;
IByteIn *Stream;
} CPpmd7z_RangeDec;
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p);
BoolInt Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p);
#define Ppmd7z_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd7_DecodeSymbol(CPpmd7 *p, const IPpmd7_RangeDec *rc);
/* ---------- Encode ---------- */
typedef struct
{
UInt64 Low;
UInt32 Range;
Byte Cache;
UInt64 CacheSize;
IByteOut *Stream;
} CPpmd7z_RangeEnc;
void Ppmd7z_RangeEnc_Init(CPpmd7z_RangeEnc *p);
void Ppmd7z_RangeEnc_FlushData(CPpmd7z_RangeEnc *p);
void Ppmd7_EncodeSymbol(CPpmd7 *p, CPpmd7z_RangeEnc *rc, int symbol);
EXTERN_C_END
#endif

@ -0,0 +1,191 @@
/* Ppmd7Dec.c -- PPMdH Decoder
2018-07-04 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Precomp.h"
#include "Ppmd7.h"
#define kTopValue (1 << 24)
BoolInt Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p)
{
unsigned i;
p->Code = 0;
p->Range = 0xFFFFFFFF;
if (IByteIn_Read(p->Stream) != 0)
return False;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | IByteIn_Read(p->Stream);
return (p->Code < 0xFFFFFFFF);
}
#define GET_Ppmd7z_RangeDec CPpmd7z_RangeDec *p = CONTAINER_FROM_VTBL(pp, CPpmd7z_RangeDec, vt);
static UInt32 Range_GetThreshold(const IPpmd7_RangeDec *pp, UInt32 total)
{
GET_Ppmd7z_RangeDec
return p->Code / (p->Range /= total);
}
static void Range_Normalize(CPpmd7z_RangeDec *p)
{
if (p->Range < kTopValue)
{
p->Code = (p->Code << 8) | IByteIn_Read(p->Stream);
p->Range <<= 8;
if (p->Range < kTopValue)
{
p->Code = (p->Code << 8) | IByteIn_Read(p->Stream);
p->Range <<= 8;
}
}
}
static void Range_Decode(const IPpmd7_RangeDec *pp, UInt32 start, UInt32 size)
{
GET_Ppmd7z_RangeDec
p->Code -= start * p->Range;
p->Range *= size;
Range_Normalize(p);
}
static UInt32 Range_DecodeBit(const IPpmd7_RangeDec *pp, UInt32 size0)
{
GET_Ppmd7z_RangeDec
UInt32 newBound = (p->Range >> 14) * size0;
UInt32 symbol;
if (p->Code < newBound)
{
symbol = 0;
p->Range = newBound;
}
else
{
symbol = 1;
p->Code -= newBound;
p->Range -= newBound;
}
Range_Normalize(p);
return symbol;
}
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p)
{
p->vt.GetThreshold = Range_GetThreshold;
p->vt.Decode = Range_Decode;
p->vt.DecodeBit = Range_DecodeBit;
}
#define MASK(sym) ((signed char *)charMask)[sym]
int Ppmd7_DecodeSymbol(CPpmd7 *p, const IPpmd7_RangeDec *rc)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
if ((count = rc->GetThreshold(rc, p->MinContext->SummFreq)) < (hiCnt = s->Freq))
{
Byte symbol;
rc->Decode(rc, 0, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update1_0(p);
return symbol;
}
p->PrevSuccess = 0;
i = p->MinContext->NumStats - 1;
do
{
if ((hiCnt += (++s)->Freq) > count)
{
Byte symbol;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update1(p);
return symbol;
}
}
while (--i);
if (count >= p->MinContext->SummFreq)
return -2;
p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol];
rc->Decode(rc, hiCnt, p->MinContext->SummFreq - hiCnt);
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats - 1;
do { MASK((--s)->Symbol) = 0; } while (--i);
}
else
{
UInt16 *prob = Ppmd7_GetBinSumm(p);
if (rc->DecodeBit(rc, *prob) == 0)
{
Byte symbol;
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
symbol = (p->FoundState = Ppmd7Context_OneState(p->MinContext))->Symbol;
Ppmd7_UpdateBin(p);
return symbol;
}
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD7_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(Ppmd7Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_State *ps[256], *s;
UInt32 freqSum, count, hiCnt;
CPpmd_See *see;
unsigned i, num, numMasked = p->MinContext->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
return -1;
p->MinContext = Ppmd7_GetContext(p, p->MinContext->Suffix);
}
while (p->MinContext->NumStats == numMasked);
hiCnt = 0;
s = Ppmd7_GetStats(p, p->MinContext);
i = 0;
num = p->MinContext->NumStats - numMasked;
do
{
int k = (int)(MASK(s->Symbol));
hiCnt += (s->Freq & k);
ps[i] = s++;
i -= k;
}
while (i != num);
see = Ppmd7_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
count = rc->GetThreshold(rc, freqSum);
if (count < hiCnt)
{
Byte symbol;
CPpmd_State **pps = ps;
for (hiCnt = 0; (hiCnt += (*pps)->Freq) <= count; pps++);
s = *pps;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
Ppmd_See_Update(see);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update2(p);
return symbol;
}
if (count >= freqSum)
return -2;
rc->Decode(rc, hiCnt, freqSum - hiCnt);
see->Summ = (UInt16)(see->Summ + freqSum);
do { MASK(ps[--i]->Symbol) = 0; } while (i != 0);
}
}

@ -0,0 +1,187 @@
/* Ppmd7Enc.c -- PPMdH Encoder
2017-04-03 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Precomp.h"
#include "Ppmd7.h"
#define kTopValue (1 << 24)
void Ppmd7z_RangeEnc_Init(CPpmd7z_RangeEnc *p)
{
p->Low = 0;
p->Range = 0xFFFFFFFF;
p->Cache = 0;
p->CacheSize = 1;
}
static void RangeEnc_ShiftLow(CPpmd7z_RangeEnc *p)
{
if ((UInt32)p->Low < (UInt32)0xFF000000 || (unsigned)(p->Low >> 32) != 0)
{
Byte temp = p->Cache;
do
{
IByteOut_Write(p->Stream, (Byte)(temp + (Byte)(p->Low >> 32)));
temp = 0xFF;
}
while (--p->CacheSize != 0);
p->Cache = (Byte)((UInt32)p->Low >> 24);
}
p->CacheSize++;
p->Low = (UInt32)p->Low << 8;
}
static void RangeEnc_Encode(CPpmd7z_RangeEnc *p, UInt32 start, UInt32 size, UInt32 total)
{
p->Low += start * (p->Range /= total);
p->Range *= size;
while (p->Range < kTopValue)
{
p->Range <<= 8;
RangeEnc_ShiftLow(p);
}
}
static void RangeEnc_EncodeBit_0(CPpmd7z_RangeEnc *p, UInt32 size0)
{
p->Range = (p->Range >> 14) * size0;
while (p->Range < kTopValue)
{
p->Range <<= 8;
RangeEnc_ShiftLow(p);
}
}
static void RangeEnc_EncodeBit_1(CPpmd7z_RangeEnc *p, UInt32 size0)
{
UInt32 newBound = (p->Range >> 14) * size0;
p->Low += newBound;
p->Range -= newBound;
while (p->Range < kTopValue)
{
p->Range <<= 8;
RangeEnc_ShiftLow(p);
}
}
void Ppmd7z_RangeEnc_FlushData(CPpmd7z_RangeEnc *p)
{
unsigned i;
for (i = 0; i < 5; i++)
RangeEnc_ShiftLow(p);
}
#define MASK(sym) ((signed char *)charMask)[sym]
void Ppmd7_EncodeSymbol(CPpmd7 *p, CPpmd7z_RangeEnc *rc, int symbol)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
UInt32 sum;
unsigned i;
if (s->Symbol == symbol)
{
RangeEnc_Encode(rc, 0, s->Freq, p->MinContext->SummFreq);
p->FoundState = s;
Ppmd7_Update1_0(p);
return;
}
p->PrevSuccess = 0;
sum = s->Freq;
i = p->MinContext->NumStats - 1;
do
{
if ((++s)->Symbol == symbol)
{
RangeEnc_Encode(rc, sum, s->Freq, p->MinContext->SummFreq);
p->FoundState = s;
Ppmd7_Update1(p);
return;
}
sum += s->Freq;
}
while (--i);
p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats - 1;
do { MASK((--s)->Symbol) = 0; } while (--i);
RangeEnc_Encode(rc, sum, p->MinContext->SummFreq - sum, p->MinContext->SummFreq);
}
else
{
UInt16 *prob = Ppmd7_GetBinSumm(p);
CPpmd_State *s = Ppmd7Context_OneState(p->MinContext);
if (s->Symbol == symbol)
{
RangeEnc_EncodeBit_0(rc, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
p->FoundState = s;
Ppmd7_UpdateBin(p);
return;
}
else
{
RangeEnc_EncodeBit_1(rc, *prob);
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD7_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
p->PrevSuccess = 0;
}
}
for (;;)
{
UInt32 escFreq;
CPpmd_See *see;
CPpmd_State *s;
UInt32 sum;
unsigned i, numMasked = p->MinContext->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
return; /* EndMarker (symbol = -1) */
p->MinContext = Ppmd7_GetContext(p, p->MinContext->Suffix);
}
while (p->MinContext->NumStats == numMasked);
see = Ppmd7_MakeEscFreq(p, numMasked, &escFreq);
s = Ppmd7_GetStats(p, p->MinContext);
sum = 0;
i = p->MinContext->NumStats;
do
{
int cur = s->Symbol;
if (cur == symbol)
{
UInt32 low = sum;
CPpmd_State *s1 = s;
do
{
sum += (s->Freq & (int)(MASK(s->Symbol)));
s++;
}
while (--i);
RangeEnc_Encode(rc, low, s1->Freq, sum + escFreq);
Ppmd_See_Update(see);
p->FoundState = s1;
Ppmd7_Update2(p);
return;
}
sum += (s->Freq & (int)(MASK(cur)));
MASK(cur) = 0;
s++;
}
while (--i);
RangeEnc_Encode(rc, sum, escFreq, sum + escFreq);
see->Summ = (UInt16)(see->Summ + sum + escFreq);
}
}

@ -0,0 +1,10 @@
/* Precomp.h -- StdAfx
2013-11-12 : Igor Pavlov : Public domain */
#ifndef __7Z_PRECOMP_H
#define __7Z_PRECOMP_H
#include "Compiler.h"
/* #include "7zTypes.h" */
#endif

@ -0,0 +1,30 @@
/* RotateDefs.h -- Rotate functions
2015-03-25 : Igor Pavlov : Public domain */
#ifndef __ROTATE_DEFS_H
#define __ROTATE_DEFS_H
#ifdef _MSC_VER
#include <stdlib.h>
/* don't use _rotl with MINGW. It can insert slow call to function. */
/* #if (_MSC_VER >= 1200) */
#pragma intrinsic(_rotl)
#pragma intrinsic(_rotr)
/* #endif */
#define rotlFixed(x, n) _rotl((x), (n))
#define rotrFixed(x, n) _rotr((x), (n))
#else
/* new compilers can translate these macros to fast commands. */
#define rotlFixed(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define rotrFixed(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#endif
#endif

@ -0,0 +1,248 @@
/* Crypto/Sha256.c -- SHA-256 Hash
2017-04-03 : Igor Pavlov : Public domain
This code is based on public domain code from Wei Dai's Crypto++ library. */
#include "Precomp.h"
#include <string.h>
#include "CpuArch.h"
#include "RotateDefs.h"
#include "Sha256.h"
/* define it for speed optimization */
#ifndef _SFX
#define _SHA256_UNROLL
#define _SHA256_UNROLL2
#endif
/* #define _SHA256_UNROLL2 */
void Sha256_Init(CSha256 *p)
{
p->state[0] = 0x6a09e667;
p->state[1] = 0xbb67ae85;
p->state[2] = 0x3c6ef372;
p->state[3] = 0xa54ff53a;
p->state[4] = 0x510e527f;
p->state[5] = 0x9b05688c;
p->state[6] = 0x1f83d9ab;
p->state[7] = 0x5be0cd19;
p->count = 0;
}
#define S0(x) (rotrFixed(x, 2) ^ rotrFixed(x,13) ^ rotrFixed(x, 22))
#define S1(x) (rotrFixed(x, 6) ^ rotrFixed(x,11) ^ rotrFixed(x, 25))
#define s0(x) (rotrFixed(x, 7) ^ rotrFixed(x,18) ^ (x >> 3))
#define s1(x) (rotrFixed(x,17) ^ rotrFixed(x,19) ^ (x >> 10))
#define blk0(i) (W[i])
#define blk2(i) (W[i] += s1(W[((i)-2)&15]) + W[((i)-7)&15] + s0(W[((i)-15)&15]))
#define Ch(x,y,z) (z^(x&(y^z)))
#define Maj(x,y,z) ((x&y)|(z&(x|y)))
#ifdef _SHA256_UNROLL2
#define R(a,b,c,d,e,f,g,h, i) \
h += S1(e) + Ch(e,f,g) + K[(i)+(size_t)(j)] + (j ? blk2(i) : blk0(i)); \
d += h; \
h += S0(a) + Maj(a, b, c)
#define RX_8(i) \
R(a,b,c,d,e,f,g,h, i); \
R(h,a,b,c,d,e,f,g, i+1); \
R(g,h,a,b,c,d,e,f, i+2); \
R(f,g,h,a,b,c,d,e, i+3); \
R(e,f,g,h,a,b,c,d, i+4); \
R(d,e,f,g,h,a,b,c, i+5); \
R(c,d,e,f,g,h,a,b, i+6); \
R(b,c,d,e,f,g,h,a, i+7)
#define RX_16 RX_8(0); RX_8(8);
#else
#define a(i) T[(0-(i))&7]
#define b(i) T[(1-(i))&7]
#define c(i) T[(2-(i))&7]
#define d(i) T[(3-(i))&7]
#define e(i) T[(4-(i))&7]
#define f(i) T[(5-(i))&7]
#define g(i) T[(6-(i))&7]
#define h(i) T[(7-(i))&7]
#define R(i) \
h(i) += S1(e(i)) + Ch(e(i),f(i),g(i)) + K[(i)+(size_t)(j)] + (j ? blk2(i) : blk0(i)); \
d(i) += h(i); \
h(i) += S0(a(i)) + Maj(a(i), b(i), c(i)) \
#ifdef _SHA256_UNROLL
#define RX_8(i) R(i+0); R(i+1); R(i+2); R(i+3); R(i+4); R(i+5); R(i+6); R(i+7);
#define RX_16 RX_8(0); RX_8(8);
#else
#define RX_16 unsigned i; for (i = 0; i < 16; i++) { R(i); }
#endif
#endif
static const UInt32 K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
static void Sha256_WriteByteBlock(CSha256 *p)
{
UInt32 W[16];
unsigned j;
UInt32 *state;
#ifdef _SHA256_UNROLL2
UInt32 a,b,c,d,e,f,g,h;
#else
UInt32 T[8];
#endif
for (j = 0; j < 16; j += 4)
{
const Byte *ccc = p->buffer + j * 4;
W[j ] = GetBe32(ccc);
W[j + 1] = GetBe32(ccc + 4);
W[j + 2] = GetBe32(ccc + 8);
W[j + 3] = GetBe32(ccc + 12);
}
state = p->state;
#ifdef _SHA256_UNROLL2
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
#else
for (j = 0; j < 8; j++)
T[j] = state[j];
#endif
for (j = 0; j < 64; j += 16)
{
RX_16
}
#ifdef _SHA256_UNROLL2
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
#else
for (j = 0; j < 8; j++)
state[j] += T[j];
#endif
/* Wipe variables */
/* memset(W, 0, sizeof(W)); */
/* memset(T, 0, sizeof(T)); */
}
#undef S0
#undef S1
#undef s0
#undef s1
void Sha256_Update(CSha256 *p, const Byte *data, size_t size)
{
if (size == 0)
return;
{
unsigned pos = (unsigned)p->count & 0x3F;
unsigned num;
p->count += size;
num = 64 - pos;
if (num > size)
{
memcpy(p->buffer + pos, data, size);
return;
}
size -= num;
memcpy(p->buffer + pos, data, num);
data += num;
}
for (;;)
{
Sha256_WriteByteBlock(p);
if (size < 64)
break;
size -= 64;
memcpy(p->buffer, data, 64);
data += 64;
}
if (size != 0)
memcpy(p->buffer, data, size);
}
void Sha256_Final(CSha256 *p, Byte *digest)
{
unsigned pos = (unsigned)p->count & 0x3F;
unsigned i;
p->buffer[pos++] = 0x80;
while (pos != (64 - 8))
{
pos &= 0x3F;
if (pos == 0)
Sha256_WriteByteBlock(p);
p->buffer[pos++] = 0;
}
{
UInt64 numBits = (p->count << 3);
SetBe32(p->buffer + 64 - 8, (UInt32)(numBits >> 32));
SetBe32(p->buffer + 64 - 4, (UInt32)(numBits));
}
Sha256_WriteByteBlock(p);
for (i = 0; i < 8; i += 2)
{
UInt32 v0 = p->state[i];
UInt32 v1 = p->state[i + 1];
SetBe32(digest , v0);
SetBe32(digest + 4, v1);
digest += 8;
}
Sha256_Init(p);
}

@ -0,0 +1,26 @@
/* Sha256.h -- SHA-256 Hash
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __CRYPTO_SHA256_H
#define __CRYPTO_SHA256_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define SHA256_DIGEST_SIZE 32
typedef struct
{
UInt32 state[8];
UInt64 count;
Byte buffer[64];
} CSha256;
void Sha256_Init(CSha256 *p);
void Sha256_Update(CSha256 *p, const Byte *data, size_t size);
void Sha256_Final(CSha256 *p, Byte *digest);
EXTERN_C_END
#endif

@ -0,0 +1,141 @@
/* Sort.c -- Sort functions
2014-04-05 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Sort.h"
#define HeapSortDown(p, k, size, temp) \
{ for (;;) { \
size_t s = (k << 1); \
if (s > size) break; \
if (s < size && p[s + 1] > p[s]) s++; \
if (temp >= p[s]) break; \
p[k] = p[s]; k = s; \
} p[k] = temp; }
void HeapSort(UInt32 *p, size_t size)
{
if (size <= 1)
return;
p--;
{
size_t i = size / 2;
do
{
UInt32 temp = p[i];
size_t k = i;
HeapSortDown(p, k, size, temp)
}
while (--i != 0);
}
/*
do
{
size_t k = 1;
UInt32 temp = p[size];
p[size--] = p[1];
HeapSortDown(p, k, size, temp)
}
while (size > 1);
*/
while (size > 3)
{
UInt32 temp = p[size];
size_t k = (p[3] > p[2]) ? 3 : 2;
p[size--] = p[1];
p[1] = p[k];
HeapSortDown(p, k, size, temp)
}
{
UInt32 temp = p[size];
p[size] = p[1];
if (size > 2 && p[2] < temp)
{
p[1] = p[2];
p[2] = temp;
}
else
p[1] = temp;
}
}
void HeapSort64(UInt64 *p, size_t size)
{
if (size <= 1)
return;
p--;
{
size_t i = size / 2;
do
{
UInt64 temp = p[i];
size_t k = i;
HeapSortDown(p, k, size, temp)
}
while (--i != 0);
}
/*
do
{
size_t k = 1;
UInt64 temp = p[size];
p[size--] = p[1];
HeapSortDown(p, k, size, temp)
}
while (size > 1);
*/
while (size > 3)
{
UInt64 temp = p[size];
size_t k = (p[3] > p[2]) ? 3 : 2;
p[size--] = p[1];
p[1] = p[k];
HeapSortDown(p, k, size, temp)
}
{
UInt64 temp = p[size];
p[size] = p[1];
if (size > 2 && p[2] < temp)
{
p[1] = p[2];
p[2] = temp;
}
else
p[1] = temp;
}
}
/*
#define HeapSortRefDown(p, vals, n, size, temp) \
{ size_t k = n; UInt32 val = vals[temp]; for (;;) { \
size_t s = (k << 1); \
if (s > size) break; \
if (s < size && vals[p[s + 1]] > vals[p[s]]) s++; \
if (val >= vals[p[s]]) break; \
p[k] = p[s]; k = s; \
} p[k] = temp; }
void HeapSortRef(UInt32 *p, UInt32 *vals, size_t size)
{
if (size <= 1)
return;
p--;
{
size_t i = size / 2;
do
{
UInt32 temp = p[i];
HeapSortRefDown(p, vals, i, size, temp);
}
while (--i != 0);
}
do
{
UInt32 temp = p[size];
p[size--] = p[1];
HeapSortRefDown(p, vals, 1, size, temp);
}
while (size > 1);
}
*/

@ -0,0 +1,18 @@
/* Sort.h -- Sort functions
2014-04-05 : Igor Pavlov : Public domain */
#ifndef __7Z_SORT_H
#define __7Z_SORT_H
#include "7zTypes.h"
EXTERN_C_BEGIN
void HeapSort(UInt32 *p, size_t size);
void HeapSort64(UInt64 *p, size_t size);
/* void HeapSortRef(UInt32 *p, UInt32 *vals, size_t size); */
EXTERN_C_END
#endif

@ -0,0 +1,90 @@
/* Xz.c - Xz
2017-05-12 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "7zCrc.h"
#include "CpuArch.h"
#include "Xz.h"
#include "XzCrc64.h"
const Byte XZ_SIG[XZ_SIG_SIZE] = { 0xFD, '7', 'z', 'X', 'Z', 0 };
/* const Byte XZ_FOOTER_SIG[XZ_FOOTER_SIG_SIZE] = { 'Y', 'Z' }; */
unsigned Xz_WriteVarInt(Byte *buf, UInt64 v)
{
unsigned i = 0;
do
{
buf[i++] = (Byte)((v & 0x7F) | 0x80);
v >>= 7;
}
while (v != 0);
buf[(size_t)i - 1] &= 0x7F;
return i;
}
void Xz_Construct(CXzStream *p)
{
p->numBlocks = 0;
p->blocks = NULL;
p->flags = 0;
}
void Xz_Free(CXzStream *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->blocks);
p->numBlocks = 0;
p->blocks = NULL;
}
unsigned XzFlags_GetCheckSize(CXzStreamFlags f)
{
unsigned t = XzFlags_GetCheckType(f);
return (t == 0) ? 0 : (4 << ((t - 1) / 3));
}
void XzCheck_Init(CXzCheck *p, unsigned mode)
{
p->mode = mode;
switch (mode)
{
case XZ_CHECK_CRC32: p->crc = CRC_INIT_VAL; break;
case XZ_CHECK_CRC64: p->crc64 = CRC64_INIT_VAL; break;
case XZ_CHECK_SHA256: Sha256_Init(&p->sha); break;
}
}
void XzCheck_Update(CXzCheck *p, const void *data, size_t size)
{
switch (p->mode)
{
case XZ_CHECK_CRC32: p->crc = CrcUpdate(p->crc, data, size); break;
case XZ_CHECK_CRC64: p->crc64 = Crc64Update(p->crc64, data, size); break;
case XZ_CHECK_SHA256: Sha256_Update(&p->sha, (const Byte *)data, size); break;
}
}
int XzCheck_Final(CXzCheck *p, Byte *digest)
{
switch (p->mode)
{
case XZ_CHECK_CRC32:
SetUi32(digest, CRC_GET_DIGEST(p->crc));
break;
case XZ_CHECK_CRC64:
{
int i;
UInt64 v = CRC64_GET_DIGEST(p->crc64);
for (i = 0; i < 8; i++, v >>= 8)
digest[i] = (Byte)(v & 0xFF);
break;
}
case XZ_CHECK_SHA256:
Sha256_Final(&p->sha, digest);
break;
default:
return 0;
}
return 1;
}

@ -0,0 +1,460 @@
/* Xz.h - Xz interface
2018-07-04 : Igor Pavlov : Public domain */
#ifndef __XZ_H
#define __XZ_H
#include "Sha256.h"
EXTERN_C_BEGIN
#define XZ_ID_Subblock 1
#define XZ_ID_Delta 3
#define XZ_ID_X86 4
#define XZ_ID_PPC 5
#define XZ_ID_IA64 6
#define XZ_ID_ARM 7
#define XZ_ID_ARMT 8
#define XZ_ID_SPARC 9
#define XZ_ID_LZMA2 0x21
unsigned Xz_ReadVarInt(const Byte *p, size_t maxSize, UInt64 *value);
unsigned Xz_WriteVarInt(Byte *buf, UInt64 v);
/* ---------- xz block ---------- */
#define XZ_BLOCK_HEADER_SIZE_MAX 1024
#define XZ_NUM_FILTERS_MAX 4
#define XZ_BF_NUM_FILTERS_MASK 3
#define XZ_BF_PACK_SIZE (1 << 6)
#define XZ_BF_UNPACK_SIZE (1 << 7)
#define XZ_FILTER_PROPS_SIZE_MAX 20
typedef struct
{
UInt64 id;
UInt32 propsSize;
Byte props[XZ_FILTER_PROPS_SIZE_MAX];
} CXzFilter;
typedef struct
{
UInt64 packSize;
UInt64 unpackSize;
Byte flags;
CXzFilter filters[XZ_NUM_FILTERS_MAX];
} CXzBlock;
#define XzBlock_GetNumFilters(p) (((p)->flags & XZ_BF_NUM_FILTERS_MASK) + 1)
#define XzBlock_HasPackSize(p) (((p)->flags & XZ_BF_PACK_SIZE) != 0)
#define XzBlock_HasUnpackSize(p) (((p)->flags & XZ_BF_UNPACK_SIZE) != 0)
#define XzBlock_HasUnsupportedFlags(p) (((p)->flags & ~(XZ_BF_NUM_FILTERS_MASK | XZ_BF_PACK_SIZE | XZ_BF_UNPACK_SIZE)) != 0)
SRes XzBlock_Parse(CXzBlock *p, const Byte *header);
SRes XzBlock_ReadHeader(CXzBlock *p, ISeqInStream *inStream, BoolInt *isIndex, UInt32 *headerSizeRes);
/* ---------- xz stream ---------- */
#define XZ_SIG_SIZE 6
#define XZ_FOOTER_SIG_SIZE 2
extern const Byte XZ_SIG[XZ_SIG_SIZE];
/*
extern const Byte XZ_FOOTER_SIG[XZ_FOOTER_SIG_SIZE];
*/
#define XZ_FOOTER_SIG_0 'Y'
#define XZ_FOOTER_SIG_1 'Z'
#define XZ_STREAM_FLAGS_SIZE 2
#define XZ_STREAM_CRC_SIZE 4
#define XZ_STREAM_HEADER_SIZE (XZ_SIG_SIZE + XZ_STREAM_FLAGS_SIZE + XZ_STREAM_CRC_SIZE)
#define XZ_STREAM_FOOTER_SIZE (XZ_FOOTER_SIG_SIZE + XZ_STREAM_FLAGS_SIZE + XZ_STREAM_CRC_SIZE + 4)
#define XZ_CHECK_MASK 0xF
#define XZ_CHECK_NO 0
#define XZ_CHECK_CRC32 1
#define XZ_CHECK_CRC64 4
#define XZ_CHECK_SHA256 10
typedef struct
{
unsigned mode;
UInt32 crc;
UInt64 crc64;
CSha256 sha;
} CXzCheck;
void XzCheck_Init(CXzCheck *p, unsigned mode);
void XzCheck_Update(CXzCheck *p, const void *data, size_t size);
int XzCheck_Final(CXzCheck *p, Byte *digest);
typedef UInt16 CXzStreamFlags;
#define XzFlags_IsSupported(f) ((f) <= XZ_CHECK_MASK)
#define XzFlags_GetCheckType(f) ((f) & XZ_CHECK_MASK)
#define XzFlags_HasDataCrc32(f) (Xz_GetCheckType(f) == XZ_CHECK_CRC32)
unsigned XzFlags_GetCheckSize(CXzStreamFlags f);
SRes Xz_ParseHeader(CXzStreamFlags *p, const Byte *buf);
SRes Xz_ReadHeader(CXzStreamFlags *p, ISeqInStream *inStream);
typedef struct
{
UInt64 unpackSize;
UInt64 totalSize;
} CXzBlockSizes;
typedef struct
{
CXzStreamFlags flags;
size_t numBlocks;
CXzBlockSizes *blocks;
UInt64 startOffset;
} CXzStream;
void Xz_Construct(CXzStream *p);
void Xz_Free(CXzStream *p, ISzAllocPtr alloc);
#define XZ_SIZE_OVERFLOW ((UInt64)(Int64)-1)
UInt64 Xz_GetUnpackSize(const CXzStream *p);
UInt64 Xz_GetPackSize(const CXzStream *p);
typedef struct
{
size_t num;
size_t numAllocated;
CXzStream *streams;
} CXzs;
void Xzs_Construct(CXzs *p);
void Xzs_Free(CXzs *p, ISzAllocPtr alloc);
SRes Xzs_ReadBackward(CXzs *p, ILookInStream *inStream, Int64 *startOffset, ICompressProgress *progress, ISzAllocPtr alloc);
UInt64 Xzs_GetNumBlocks(const CXzs *p);
UInt64 Xzs_GetUnpackSize(const CXzs *p);
// ECoderStatus values are identical to ELzmaStatus values of LZMA2 decoder
typedef enum
{
CODER_STATUS_NOT_SPECIFIED, /* use main error code instead */
CODER_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
CODER_STATUS_NOT_FINISHED, /* stream was not finished */
CODER_STATUS_NEEDS_MORE_INPUT /* you must provide more input bytes */
} ECoderStatus;
// ECoderFinishMode values are identical to ELzmaFinishMode
typedef enum
{
CODER_FINISH_ANY, /* finish at any point */
CODER_FINISH_END /* block must be finished at the end */
} ECoderFinishMode;
typedef struct _IStateCoder
{
void *p;
void (*Free)(void *p, ISzAllocPtr alloc);
SRes (*SetProps)(void *p, const Byte *props, size_t propSize, ISzAllocPtr alloc);
void (*Init)(void *p);
SRes (*Code2)(void *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
int srcWasFinished, ECoderFinishMode finishMode,
// int *wasFinished,
ECoderStatus *status);
SizeT (*Filter)(void *p, Byte *data, SizeT size);
} IStateCoder;
#define MIXCODER_NUM_FILTERS_MAX 4
typedef struct
{
ISzAllocPtr alloc;
Byte *buf;
unsigned numCoders;
Byte *outBuf;
size_t outBufSize;
size_t outWritten; // is equal to lzmaDecoder.dicPos (in outBuf mode)
BoolInt wasFinished;
SRes res;
ECoderStatus status;
// BoolInt SingleBufMode;
int finished[MIXCODER_NUM_FILTERS_MAX - 1];
size_t pos[MIXCODER_NUM_FILTERS_MAX - 1];
size_t size[MIXCODER_NUM_FILTERS_MAX - 1];
UInt64 ids[MIXCODER_NUM_FILTERS_MAX];
SRes results[MIXCODER_NUM_FILTERS_MAX];
IStateCoder coders[MIXCODER_NUM_FILTERS_MAX];
} CMixCoder;
typedef enum
{
XZ_STATE_STREAM_HEADER,
XZ_STATE_STREAM_INDEX,
XZ_STATE_STREAM_INDEX_CRC,
XZ_STATE_STREAM_FOOTER,
XZ_STATE_STREAM_PADDING,
XZ_STATE_BLOCK_HEADER,
XZ_STATE_BLOCK,
XZ_STATE_BLOCK_FOOTER
} EXzState;
typedef struct
{
EXzState state;
UInt32 pos;
unsigned alignPos;
unsigned indexPreSize;
CXzStreamFlags streamFlags;
UInt32 blockHeaderSize;
UInt64 packSize;
UInt64 unpackSize;
UInt64 numBlocks; // number of finished blocks in current stream
UInt64 indexSize;
UInt64 indexPos;
UInt64 padSize;
UInt64 numStartedStreams;
UInt64 numFinishedStreams;
UInt64 numTotalBlocks;
UInt32 crc;
CMixCoder decoder;
CXzBlock block;
CXzCheck check;
CSha256 sha;
BoolInt parseMode;
BoolInt headerParsedOk;
BoolInt decodeToStreamSignature;
unsigned decodeOnlyOneBlock;
Byte *outBuf;
size_t outBufSize;
size_t outDataWritten; // the size of data in (outBuf) that were fully unpacked
Byte shaDigest[SHA256_DIGEST_SIZE];
Byte buf[XZ_BLOCK_HEADER_SIZE_MAX];
} CXzUnpacker;
/* alloc : aligned for cache line allocation is better */
void XzUnpacker_Construct(CXzUnpacker *p, ISzAllocPtr alloc);
void XzUnpacker_Init(CXzUnpacker *p);
void XzUnpacker_SetOutBuf(CXzUnpacker *p, Byte *outBuf, size_t outBufSize);
void XzUnpacker_Free(CXzUnpacker *p);
/*
XzUnpacker
The sequence for decoding functions:
{
XzUnpacker_Construct()
[Decoding_Calls]
XzUnpacker_Free()
}
[Decoding_Calls]
There are 3 types of interfaces for [Decoding_Calls] calls:
Interface-1 : Partial output buffers:
{
XzUnpacker_Init()
for()
XzUnpacker_Code();
}
Interface-2 : Direct output buffer:
Use it, if you know exact size of decoded data, and you need
whole xz unpacked data in one output buffer.
xz unpacker doesn't allocate additional buffer for lzma2 dictionary in that mode.
{
XzUnpacker_Init()
XzUnpacker_SetOutBufMode(); // to set output buffer and size
for()
XzUnpacker_Code(); // (dest = NULL) in XzUnpacker_Code()
}
Interface-3 : Direct output buffer : One call full decoding
It unpacks whole input buffer to output buffer in one call.
It uses Interface-2 internally.
{
XzUnpacker_CodeFull()
}
*/
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
CODER_FINISH_ANY - use smallest number of input bytes
CODER_FINISH_END - read EndOfStream marker after decoding
Returns:
SZ_OK
status:
CODER_STATUS_NOT_FINISHED,
CODER_STATUS_NEEDS_MORE_INPUT - maybe there are more xz streams,
call XzUnpacker_IsStreamWasFinished to check that current stream was finished
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_DATA - Data error
SZ_ERROR_UNSUPPORTED - Unsupported method or method properties
SZ_ERROR_CRC - CRC error
// SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
SZ_ERROR_NO_ARCHIVE - the error with xz Stream Header with one of the following reasons:
- xz Stream Signature failure
- CRC32 of xz Stream Header is failed
- The size of Stream padding is not multiple of four bytes.
It's possible to get that error, if xz stream was finished and the stream
contains some another data. In that case you can call XzUnpacker_GetExtraSize()
function to get real size of xz stream.
*/
SRes XzUnpacker_Code(CXzUnpacker *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, int srcFinished,
ECoderFinishMode finishMode, ECoderStatus *status);
SRes XzUnpacker_CodeFull(CXzUnpacker *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen,
ECoderFinishMode finishMode, ECoderStatus *status);
BoolInt XzUnpacker_IsStreamWasFinished(const CXzUnpacker *p);
/*
XzUnpacker_GetExtraSize() returns then number of uncofirmed bytes,
if it's in (XZ_STATE_STREAM_HEADER) state or in (XZ_STATE_STREAM_PADDING) state.
These bytes can be some bytes after xz archive, or
it can be start of new xz stream.
Call XzUnpacker_GetExtraSize() after XzUnpacker_Code() function to detect real size of
xz stream in two cases, if XzUnpacker_Code() returns:
res == SZ_OK && status == CODER_STATUS_NEEDS_MORE_INPUT
res == SZ_ERROR_NO_ARCHIVE
*/
UInt64 XzUnpacker_GetExtraSize(const CXzUnpacker *p);
/*
for random block decoding:
XzUnpacker_Init();
set CXzUnpacker::streamFlags
XzUnpacker_PrepareToRandomBlockDecoding()
loop
{
XzUnpacker_Code()
XzUnpacker_IsBlockFinished()
}
*/
void XzUnpacker_PrepareToRandomBlockDecoding(CXzUnpacker *p);
BoolInt XzUnpacker_IsBlockFinished(const CXzUnpacker *p);
#define XzUnpacker_GetPackSizeForIndex(p) ((p)->packSize + (p)->blockHeaderSize + XzFlags_GetCheckSize((p)->streamFlags))
/* ---------- Multi Threading Decoding ---------- */
typedef struct
{
size_t inBufSize_ST;
size_t outStep_ST;
BoolInt ignoreErrors;
#ifndef _7ZIP_ST
unsigned numThreads;
size_t inBufSize_MT;
size_t memUseMax;
#endif
} CXzDecMtProps;
void XzDecMtProps_Init(CXzDecMtProps *p);
typedef void * CXzDecMtHandle;
/*
alloc : XzDecMt uses CAlignOffsetAlloc for addresses allocated by (alloc).
allocMid : for big allocations, aligned allocation is better
*/
CXzDecMtHandle XzDecMt_Create(ISzAllocPtr alloc, ISzAllocPtr allocMid);
void XzDecMt_Destroy(CXzDecMtHandle p);
typedef struct
{
Byte UnpackSize_Defined;
Byte NumStreams_Defined;
Byte NumBlocks_Defined;
Byte DataAfterEnd;
Byte DecodingTruncated; // Decoding was Truncated, we need only partial output data
UInt64 InSize; // pack size processed
UInt64 OutSize;
UInt64 NumStreams;
UInt64 NumBlocks;
SRes DecodeRes;
SRes ReadRes;
SRes ProgressRes;
SRes CombinedRes;
SRes CombinedRes_Type;
} CXzStatInfo;
void XzStatInfo_Clear(CXzStatInfo *p);
/*
XzDecMt_Decode()
SRes:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_NO_ARCHIVE - is not xz archive
SZ_ERROR_ARCHIVE - Headers error
SZ_ERROR_DATA - Data Error
SZ_ERROR_CRC - CRC Error
SZ_ERROR_INPUT_EOF - it needs more input data
SZ_ERROR_WRITE - ISeqOutStream error
(SZ_ERROR_READ) - ISeqInStream errors
(SZ_ERROR_PROGRESS) - ICompressProgress errors
// SZ_ERROR_THREAD - error in multi-threading functions
MY_SRes_HRESULT_FROM_WRes(WRes_error) - error in multi-threading function
*/
SRes XzDecMt_Decode(CXzDecMtHandle p,
const CXzDecMtProps *props,
const UInt64 *outDataSize, // NULL means undefined
int finishMode, // 0 - partial unpacking is allowed, 1 - xz stream(s) must be finished
ISeqOutStream *outStream,
// Byte *outBuf, size_t *outBufSize,
ISeqInStream *inStream,
// const Byte *inData, size_t inDataSize,
CXzStatInfo *stat,
int *isMT, // 0 means that ST (Single-Thread) version was used
ICompressProgress *progress);
EXTERN_C_END
#endif

@ -0,0 +1,86 @@
/* XzCrc64.c -- CRC64 calculation
2017-05-23 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "XzCrc64.h"
#include "CpuArch.h"
#define kCrc64Poly UINT64_CONST(0xC96C5795D7870F42)
#ifdef MY_CPU_LE
#define CRC64_NUM_TABLES 4
#else
#define CRC64_NUM_TABLES 5
#define CRC_UINT64_SWAP(v) \
((v >> 56) \
| ((v >> 40) & ((UInt64)0xFF << 8)) \
| ((v >> 24) & ((UInt64)0xFF << 16)) \
| ((v >> 8) & ((UInt64)0xFF << 24)) \
| ((v << 8) & ((UInt64)0xFF << 32)) \
| ((v << 24) & ((UInt64)0xFF << 40)) \
| ((v << 40) & ((UInt64)0xFF << 48)) \
| ((v << 56)))
UInt64 MY_FAST_CALL XzCrc64UpdateT1_BeT4(UInt64 v, const void *data, size_t size, const UInt64 *table);
#endif
#ifndef MY_CPU_BE
UInt64 MY_FAST_CALL XzCrc64UpdateT4(UInt64 v, const void *data, size_t size, const UInt64 *table);
#endif
typedef UInt64 (MY_FAST_CALL *CRC64_FUNC)(UInt64 v, const void *data, size_t size, const UInt64 *table);
static CRC64_FUNC g_Crc64Update;
UInt64 g_Crc64Table[256 * CRC64_NUM_TABLES];
UInt64 MY_FAST_CALL Crc64Update(UInt64 v, const void *data, size_t size)
{
return g_Crc64Update(v, data, size, g_Crc64Table);
}
UInt64 MY_FAST_CALL Crc64Calc(const void *data, size_t size)
{
return g_Crc64Update(CRC64_INIT_VAL, data, size, g_Crc64Table) ^ CRC64_INIT_VAL;
}
void MY_FAST_CALL Crc64GenerateTable()
{
UInt32 i;
for (i = 0; i < 256; i++)
{
UInt64 r = i;
unsigned j;
for (j = 0; j < 8; j++)
r = (r >> 1) ^ (kCrc64Poly & ((UInt64)0 - (r & 1)));
g_Crc64Table[i] = r;
}
for (i = 256; i < 256 * CRC64_NUM_TABLES; i++)
{
UInt64 r = g_Crc64Table[(size_t)i - 256];
g_Crc64Table[i] = g_Crc64Table[r & 0xFF] ^ (r >> 8);
}
#ifdef MY_CPU_LE
g_Crc64Update = XzCrc64UpdateT4;
#else
{
#ifndef MY_CPU_BE
UInt32 k = 1;
if (*(const Byte *)&k == 1)
g_Crc64Update = XzCrc64UpdateT4;
else
#endif
{
for (i = 256 * CRC64_NUM_TABLES - 1; i >= 256; i--)
{
UInt64 x = g_Crc64Table[(size_t)i - 256];
g_Crc64Table[i] = CRC_UINT64_SWAP(x);
}
g_Crc64Update = XzCrc64UpdateT1_BeT4;
}
}
#endif
}

@ -0,0 +1,26 @@
/* XzCrc64.h -- CRC64 calculation
2013-01-18 : Igor Pavlov : Public domain */
#ifndef __XZ_CRC64_H
#define __XZ_CRC64_H
#include <stddef.h>
#include "7zTypes.h"
EXTERN_C_BEGIN
extern UInt64 g_Crc64Table[];
void MY_FAST_CALL Crc64GenerateTable(void);
#define CRC64_INIT_VAL UINT64_CONST(0xFFFFFFFFFFFFFFFF)
#define CRC64_GET_DIGEST(crc) ((crc) ^ CRC64_INIT_VAL)
#define CRC64_UPDATE_BYTE(crc, b) (g_Crc64Table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt64 MY_FAST_CALL Crc64Update(UInt64 crc, const void *data, size_t size);
UInt64 MY_FAST_CALL Crc64Calc(const void *data, size_t size);
EXTERN_C_END
#endif

@ -0,0 +1,69 @@
/* XzCrc64Opt.c -- CRC64 calculation
2017-06-30 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#ifndef MY_CPU_BE
#define CRC64_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt64 MY_FAST_CALL XzCrc64UpdateT4(UInt64 v, const void *data, size_t size, const UInt64 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC64_UPDATE_BYTE_2(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
UInt32 d = (UInt32)v ^ *(const UInt32 *)p;
v = (v >> 32)
^ (table + 0x300)[((d ) & 0xFF)]
^ (table + 0x200)[((d >> 8) & 0xFF)]
^ (table + 0x100)[((d >> 16) & 0xFF)]
^ (table + 0x000)[((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC64_UPDATE_BYTE_2(v, *p);
return v;
}
#endif
#ifndef MY_CPU_LE
#define CRC_UINT64_SWAP(v) \
((v >> 56) \
| ((v >> 40) & ((UInt64)0xFF << 8)) \
| ((v >> 24) & ((UInt64)0xFF << 16)) \
| ((v >> 8) & ((UInt64)0xFF << 24)) \
| ((v << 8) & ((UInt64)0xFF << 32)) \
| ((v << 24) & ((UInt64)0xFF << 40)) \
| ((v << 40) & ((UInt64)0xFF << 48)) \
| ((v << 56)))
#define CRC64_UPDATE_BYTE_2_BE(crc, b) (table[(Byte)((crc) >> 56) ^ (b)] ^ ((crc) << 8))
UInt64 MY_FAST_CALL XzCrc64UpdateT1_BeT4(UInt64 v, const void *data, size_t size, const UInt64 *table)
{
const Byte *p = (const Byte *)data;
table += 0x100;
v = CRC_UINT64_SWAP(v);
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC64_UPDATE_BYTE_2_BE(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
UInt32 d = (UInt32)(v >> 32) ^ *(const UInt32 *)p;
v = (v << 32)
^ (table + 0x000)[((d ) & 0xFF)]
^ (table + 0x100)[((d >> 8) & 0xFF)]
^ (table + 0x200)[((d >> 16) & 0xFF)]
^ (table + 0x300)[((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC64_UPDATE_BYTE_2_BE(v, *p);
return CRC_UINT64_SWAP(v);
}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,60 @@
/* XzEnc.h -- Xz Encode
2017-06-27 : Igor Pavlov : Public domain */
#ifndef __XZ_ENC_H
#define __XZ_ENC_H
#include "Lzma2Enc.h"
#include "Xz.h"
EXTERN_C_BEGIN
#define XZ_PROPS__BLOCK_SIZE__AUTO LZMA2_ENC_PROPS__BLOCK_SIZE__AUTO
#define XZ_PROPS__BLOCK_SIZE__SOLID LZMA2_ENC_PROPS__BLOCK_SIZE__SOLID
typedef struct
{
UInt32 id;
UInt32 delta;
UInt32 ip;
int ipDefined;
} CXzFilterProps;
void XzFilterProps_Init(CXzFilterProps *p);
typedef struct
{
CLzma2EncProps lzma2Props;
CXzFilterProps filterProps;
unsigned checkId;
UInt64 blockSize;
int numBlockThreads_Reduced;
int numBlockThreads_Max;
int numTotalThreads;
int forceWriteSizesInHeader;
UInt64 reduceSize;
} CXzProps;
void XzProps_Init(CXzProps *p);
typedef void * CXzEncHandle;
CXzEncHandle XzEnc_Create(ISzAllocPtr alloc, ISzAllocPtr allocBig);
void XzEnc_Destroy(CXzEncHandle p);
SRes XzEnc_SetProps(CXzEncHandle p, const CXzProps *props);
void XzEnc_SetDataSize(CXzEncHandle p, UInt64 expectedDataSiize);
SRes XzEnc_Encode(CXzEncHandle p, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress);
SRes Xz_Encode(ISeqOutStream *outStream, ISeqInStream *inStream,
const CXzProps *props, ICompressProgress *progress);
SRes Xz_EncodeEmpty(ISeqOutStream *outStream);
EXTERN_C_END
#endif

@ -0,0 +1,319 @@
/* XzIn.c - Xz input
2018-07-04 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
#include "7zCrc.h"
#include "CpuArch.h"
#include "Xz.h"
/*
#define XZ_FOOTER_SIG_CHECK(p) (memcmp((p), XZ_FOOTER_SIG, XZ_FOOTER_SIG_SIZE) == 0)
*/
#define XZ_FOOTER_SIG_CHECK(p) ((p)[0] == XZ_FOOTER_SIG_0 && (p)[1] == XZ_FOOTER_SIG_1)
SRes Xz_ReadHeader(CXzStreamFlags *p, ISeqInStream *inStream)
{
Byte sig[XZ_STREAM_HEADER_SIZE];
RINOK(SeqInStream_Read2(inStream, sig, XZ_STREAM_HEADER_SIZE, SZ_ERROR_NO_ARCHIVE));
if (memcmp(sig, XZ_SIG, XZ_SIG_SIZE) != 0)
return SZ_ERROR_NO_ARCHIVE;
return Xz_ParseHeader(p, sig);
}
#define READ_VARINT_AND_CHECK(buf, pos, size, res) \
{ unsigned s = Xz_ReadVarInt(buf + pos, size - pos, res); \
if (s == 0) return SZ_ERROR_ARCHIVE; pos += s; }
SRes XzBlock_ReadHeader(CXzBlock *p, ISeqInStream *inStream, BoolInt *isIndex, UInt32 *headerSizeRes)
{
Byte header[XZ_BLOCK_HEADER_SIZE_MAX];
unsigned headerSize;
*headerSizeRes = 0;
RINOK(SeqInStream_ReadByte(inStream, &header[0]));
headerSize = (unsigned)header[0];
if (headerSize == 0)
{
*headerSizeRes = 1;
*isIndex = True;
return SZ_OK;
}
*isIndex = False;
headerSize = (headerSize << 2) + 4;
*headerSizeRes = headerSize;
RINOK(SeqInStream_Read(inStream, header + 1, headerSize - 1));
return XzBlock_Parse(p, header);
}
#define ADD_SIZE_CHECK(size, val) \
{ UInt64 newSize = size + (val); if (newSize < size) return XZ_SIZE_OVERFLOW; size = newSize; }
UInt64 Xz_GetUnpackSize(const CXzStream *p)
{
UInt64 size = 0;
size_t i;
for (i = 0; i < p->numBlocks; i++)
ADD_SIZE_CHECK(size, p->blocks[i].unpackSize);
return size;
}
UInt64 Xz_GetPackSize(const CXzStream *p)
{
UInt64 size = 0;
size_t i;
for (i = 0; i < p->numBlocks; i++)
ADD_SIZE_CHECK(size, (p->blocks[i].totalSize + 3) & ~(UInt64)3);
return size;
}
/*
SRes XzBlock_ReadFooter(CXzBlock *p, CXzStreamFlags f, ISeqInStream *inStream)
{
return SeqInStream_Read(inStream, p->check, XzFlags_GetCheckSize(f));
}
*/
static SRes Xz_ReadIndex2(CXzStream *p, const Byte *buf, size_t size, ISzAllocPtr alloc)
{
size_t numBlocks, pos = 1;
UInt32 crc;
if (size < 5 || buf[0] != 0)
return SZ_ERROR_ARCHIVE;
size -= 4;
crc = CrcCalc(buf, size);
if (crc != GetUi32(buf + size))
return SZ_ERROR_ARCHIVE;
{
UInt64 numBlocks64;
READ_VARINT_AND_CHECK(buf, pos, size, &numBlocks64);
numBlocks = (size_t)numBlocks64;
if (numBlocks != numBlocks64 || numBlocks * 2 > size)
return SZ_ERROR_ARCHIVE;
}
Xz_Free(p, alloc);
if (numBlocks != 0)
{
size_t i;
p->numBlocks = numBlocks;
p->blocks = (CXzBlockSizes *)ISzAlloc_Alloc(alloc, sizeof(CXzBlockSizes) * numBlocks);
if (!p->blocks)
return SZ_ERROR_MEM;
for (i = 0; i < numBlocks; i++)
{
CXzBlockSizes *block = &p->blocks[i];
READ_VARINT_AND_CHECK(buf, pos, size, &block->totalSize);
READ_VARINT_AND_CHECK(buf, pos, size, &block->unpackSize);
if (block->totalSize == 0)
return SZ_ERROR_ARCHIVE;
}
}
while ((pos & 3) != 0)
if (buf[pos++] != 0)
return SZ_ERROR_ARCHIVE;
return (pos == size) ? SZ_OK : SZ_ERROR_ARCHIVE;
}
static SRes Xz_ReadIndex(CXzStream *p, ILookInStream *stream, UInt64 indexSize, ISzAllocPtr alloc)
{
SRes res;
size_t size;
Byte *buf;
if (indexSize > ((UInt32)1 << 31))
return SZ_ERROR_UNSUPPORTED;
size = (size_t)indexSize;
if (size != indexSize)
return SZ_ERROR_UNSUPPORTED;
buf = (Byte *)ISzAlloc_Alloc(alloc, size);
if (!buf)
return SZ_ERROR_MEM;
res = LookInStream_Read2(stream, buf, size, SZ_ERROR_UNSUPPORTED);
if (res == SZ_OK)
res = Xz_ReadIndex2(p, buf, size, alloc);
ISzAlloc_Free(alloc, buf);
return res;
}
static SRes LookInStream_SeekRead_ForArc(ILookInStream *stream, UInt64 offset, void *buf, size_t size)
{
RINOK(LookInStream_SeekTo(stream, offset));
return LookInStream_Read(stream, buf, size);
/* return LookInStream_Read2(stream, buf, size, SZ_ERROR_NO_ARCHIVE); */
}
static SRes Xz_ReadBackward(CXzStream *p, ILookInStream *stream, Int64 *startOffset, ISzAllocPtr alloc)
{
UInt64 indexSize;
Byte buf[XZ_STREAM_FOOTER_SIZE];
UInt64 pos = *startOffset;
if ((pos & 3) != 0 || pos < XZ_STREAM_FOOTER_SIZE)
return SZ_ERROR_NO_ARCHIVE;
pos -= XZ_STREAM_FOOTER_SIZE;
RINOK(LookInStream_SeekRead_ForArc(stream, pos, buf, XZ_STREAM_FOOTER_SIZE));
if (!XZ_FOOTER_SIG_CHECK(buf + 10))
{
UInt32 total = 0;
pos += XZ_STREAM_FOOTER_SIZE;
for (;;)
{
size_t i;
#define TEMP_BUF_SIZE (1 << 10)
Byte temp[TEMP_BUF_SIZE];
i = (pos > TEMP_BUF_SIZE) ? TEMP_BUF_SIZE : (size_t)pos;
pos -= i;
RINOK(LookInStream_SeekRead_ForArc(stream, pos, temp, i));
total += (UInt32)i;
for (; i != 0; i--)
if (temp[i - 1] != 0)
break;
if (i != 0)
{
if ((i & 3) != 0)
return SZ_ERROR_NO_ARCHIVE;
pos += i;
break;
}
if (pos < XZ_STREAM_FOOTER_SIZE || total > (1 << 16))
return SZ_ERROR_NO_ARCHIVE;
}
if (pos < XZ_STREAM_FOOTER_SIZE)
return SZ_ERROR_NO_ARCHIVE;
pos -= XZ_STREAM_FOOTER_SIZE;
RINOK(LookInStream_SeekRead_ForArc(stream, pos, buf, XZ_STREAM_FOOTER_SIZE));
if (!XZ_FOOTER_SIG_CHECK(buf + 10))
return SZ_ERROR_NO_ARCHIVE;
}
p->flags = (CXzStreamFlags)GetBe16(buf + 8);
if (!XzFlags_IsSupported(p->flags))
return SZ_ERROR_UNSUPPORTED;
if (GetUi32(buf) != CrcCalc(buf + 4, 6))
return SZ_ERROR_ARCHIVE;
indexSize = ((UInt64)GetUi32(buf + 4) + 1) << 2;
if (pos < indexSize)
return SZ_ERROR_ARCHIVE;
pos -= indexSize;
RINOK(LookInStream_SeekTo(stream, pos));
RINOK(Xz_ReadIndex(p, stream, indexSize, alloc));
{
UInt64 totalSize = Xz_GetPackSize(p);
if (totalSize == XZ_SIZE_OVERFLOW
|| totalSize >= ((UInt64)1 << 63)
|| pos < totalSize + XZ_STREAM_HEADER_SIZE)
return SZ_ERROR_ARCHIVE;
pos -= (totalSize + XZ_STREAM_HEADER_SIZE);
RINOK(LookInStream_SeekTo(stream, pos));
*startOffset = pos;
}
{
CXzStreamFlags headerFlags;
CSecToRead secToRead;
SecToRead_CreateVTable(&secToRead);
secToRead.realStream = stream;
RINOK(Xz_ReadHeader(&headerFlags, &secToRead.vt));
return (p->flags == headerFlags) ? SZ_OK : SZ_ERROR_ARCHIVE;
}
}
/* ---------- Xz Streams ---------- */
void Xzs_Construct(CXzs *p)
{
p->num = p->numAllocated = 0;
p->streams = 0;
}
void Xzs_Free(CXzs *p, ISzAllocPtr alloc)
{
size_t i;
for (i = 0; i < p->num; i++)
Xz_Free(&p->streams[i], alloc);
ISzAlloc_Free(alloc, p->streams);
p->num = p->numAllocated = 0;
p->streams = 0;
}
UInt64 Xzs_GetNumBlocks(const CXzs *p)
{
UInt64 num = 0;
size_t i;
for (i = 0; i < p->num; i++)
num += p->streams[i].numBlocks;
return num;
}
UInt64 Xzs_GetUnpackSize(const CXzs *p)
{
UInt64 size = 0;
size_t i;
for (i = 0; i < p->num; i++)
ADD_SIZE_CHECK(size, Xz_GetUnpackSize(&p->streams[i]));
return size;
}
/*
UInt64 Xzs_GetPackSize(const CXzs *p)
{
UInt64 size = 0;
size_t i;
for (i = 0; i < p->num; i++)
ADD_SIZE_CHECK(size, Xz_GetTotalSize(&p->streams[i]));
return size;
}
*/
SRes Xzs_ReadBackward(CXzs *p, ILookInStream *stream, Int64 *startOffset, ICompressProgress *progress, ISzAllocPtr alloc)
{
Int64 endOffset = 0;
RINOK(ILookInStream_Seek(stream, &endOffset, SZ_SEEK_END));
*startOffset = endOffset;
for (;;)
{
CXzStream st;
SRes res;
Xz_Construct(&st);
res = Xz_ReadBackward(&st, stream, startOffset, alloc);
st.startOffset = *startOffset;
RINOK(res);
if (p->num == p->numAllocated)
{
size_t newNum = p->num + p->num / 4 + 1;
Byte *data = (Byte *)ISzAlloc_Alloc(alloc, newNum * sizeof(CXzStream));
if (!data)
return SZ_ERROR_MEM;
p->numAllocated = newNum;
if (p->num != 0)
memcpy(data, p->streams, p->num * sizeof(CXzStream));
ISzAlloc_Free(alloc, p->streams);
p->streams = (CXzStream *)data;
}
p->streams[p->num++] = st;
if (*startOffset == 0)
break;
RINOK(LookInStream_SeekTo(stream, *startOffset));
if (progress && ICompressProgress_Progress(progress, endOffset - *startOffset, (UInt64)(Int64)-1) != SZ_OK)
return SZ_ERROR_PROGRESS;
}
return SZ_OK;
}

@ -26,8 +26,8 @@
#include "nel/misc/file.h"
#include "nel/misc/command.h"
#include "nel/misc/sstring.h"
#include "nel/misc/seven_zip.h"
#include "game_share/singleton_registry.h"
#include "seven_zip.h"
using namespace std;
using namespace NLMISC;

Loading…
Cancel
Save