You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ryzom-core/code/nel/include/nel/net/module.h

917 lines
29 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef NL_FILE_MODULE_H
#define NL_FILE_MODULE_H
#include "nel/misc/factory.h"
#include "nel/misc/command.h"
#include "nel/misc/string_mapper.h"
#include "nel/misc/co_task.h"
#include "nel/misc/algo.h"
#include "nel/net/message.h"
#include "nel/net/unified_network.h"
#include "module_common.h"
namespace NLNET
{
class CGatewayRoute;
class IModuleInterceptable;
class IInterceptorRegistrar
{
public:
virtual ~IInterceptorRegistrar() { }
virtual void registerInterceptor(IModuleInterceptable *interceptor) =0;
virtual void unregisterInterceptor(IModuleInterceptable *interceptor) =0;
};
/** This interface contains some module methods that can be intercepted.
* This is used to build responsibility chain for message processing
* or to intercept module up/down to automatically track a list of
* interesting module proxy.
*/
class IModuleInterceptable
{
public:
IModuleInterceptable();
virtual ~IModuleInterceptable();
void registerInterceptor(IInterceptorRegistrar *registrar);
void interceptorUnregistered(IInterceptorRegistrar *registrar);
IInterceptorRegistrar *getRegistrar();
/** Building of the manifest string can involve interceptors.
* The system will call this function on each interceptor
* and concatenate the returned strings to build the manifest string.
* A default implementation is given that return an emty string.
*/
virtual std::string buildModuleManifest() const { return std::string(); }
//@name Callback from module sockets
//@{
/** Called by a socket to inform this module that another
* module has been created OR has been made accessible (due to
* a gateway connection).
*/
virtual void onModuleUp(IModuleProxy *moduleProxy) = 0;
/** Called by a socket to inform this module that another
* module has been deleted OR has been no more accessible (due to
* some gateway disconnection).
*/
virtual void onModuleDown(IModuleProxy *moduleProxy) =0;
/** Called internally by basic module imp to process the message by
* application code.
* The system will call each interceptor until one return true.
*/
virtual bool onProcessModuleMessage(IModuleProxy *senderModuleProxy, const CMessage &message) =0;
/** Called by a socket to inform this module that the security
* data attached to a proxy have changed.
*/
virtual void onModuleSecurityChange(IModuleProxy *moduleProxy) =0;
private:
IInterceptorRegistrar *_Registrar;
};
/** This is the interface for the a module.
* It describe interaction with the module itself,
* with the module manager, and the module socket.
*/
class IModule :
public NLMISC::CRefCount,
public IInterceptorRegistrar,
public IModuleInterceptable
{
friend class IModuleFactory;
virtual void setFactory(IModuleFactory *factory) =0;
public:
/// The module is already plugged in the specified pluging
class EModuleAlreadyPluggedHere : public NLMISC::Exception
{
};
/// An operation invocation has failed (mostly because of lost server module)
class EInvokeFailed : public NLMISC::Exception
{
};
/// An operation invocation has failed because of a bad return type from servant
class EInvokeBadReturn : public NLMISC::Exception
{
};
// Module management =====================
virtual ~IModule() {}
/** Module initialization.
* If the initialization return false, then the module manager deleted
* the module immediately.
*/
virtual bool initModule(const TParsedCommandLine &initInfo) =0;
//@name Basic module information
//@{
/** Return the module ID. Each module has a local unique ID assigned
* by the manager during module creation.
* This ID is local because it is only valid inside a given process.
* When module are declared in another process, they receive a
* local ID that is different than the ID in their host process.
*/
virtual TModuleId getModuleId() const =0;
/** Return the module name. Each module instance must have a unique
* name in the host process.
* If no mane is given during module creation, the module manager
* build a unique name from the module class and a number.
*/
virtual const std::string &getModuleName() const =0;
/// Return the module class.
virtual const std::string &getModuleClassName() const =0;
/** Return the module fully qualified name.
* the MFQN is the identifier that is used across process to identify
* each module.
* The MDQNis composed from the computer host name, the process ID and
* the module name.
* Format : <hostname>:<pid>:<moduleName>
* This name is guarantied to be unique (at least, if the host name
* is unique !)
*/
virtual const std::string &getModuleFullyQualifiedName() const =0;
/** Return the manifest of the module.
* The manifest is a simple string of undefined format.
* The manifest is used by a module to expose some intention
* or affinity (or whatever else you could imagine) of the
* module.
* The manifest if transmit along with the module proxy, allowing
* any module seeing the proxy to read the manifest.
* You should not use manifest to put big string because it is
* transmit with proxy information.
* Likewise, you should never use manifest to transmit critical data
* (such as password) because any module can read it.
*/
virtual std::string getModuleManifest() const =0;
/** Tell if the module implementation support immediate dispatching.
* Immediate dispatching is when a message is send between
* collocated module (i.e module on the same gateway). In that case,
* the gateway forward the module immediately to the addressee module.
* In some case, this is not the expected behavior because it give
* different result depending if the communicating modules are
* collocated or not.
* It you module didn't support collocation optimisation, you must
* override this method and return false.
* In this case, message are stored in a queue and dispatching occur
* in the next gateway update, just before the network update.
*/
virtual bool isImmediateDispatchingSupported() const { return true; }
//@}
//@name Callback from the module manager
//@{
/// A Nel layer 5 service has started.
virtual void onServiceUp(const std::string &serviceName, NLNET::TServiceId serviceId) =0;
/// A Nel layer 5 service has stopped.
virtual void onServiceDown(const std::string &serviceName, NLNET::TServiceId serviceId) = 0;
/** Regular update from application.
* If the application is a service, then it call CModuleManager::updateModules at each
* service loop.
* If the application is a regular application, then you have to call manually
* CModuleManager::updateModules at regular intervals.
*/
virtual void onModuleUpdate() =0;
/** The service main loop is terminating it job', all module while be
* disconnected and removed after this callback.
*/
virtual void onApplicationExit() = 0;
//@}
// socket management =====================
//@name module sockets operation
//@{
/** Plug this module in the specified socket.
* Note that a module can be plugged in several socket at the same
* time, but not twice in the same socket.
*/
virtual void plugModule(IModuleSocket *moduleSocket)
throw (EModuleAlreadyPluggedHere)
=0;
/** Unplug this module from the specified socket.
* Note that a module can be plugged in several socket at the same
* time, but not twice in the same socket.
* Throw an exception if the socket is not currently plug into
* the specified socket.
*/
virtual void unplugModule(IModuleSocket *moduleSocket)
throw (EModuleNotPluggedHere)
=0;
/** Fill resultList vector with the list of socket into
* witch this module is currently plugged.
* This method don't clear the result vector before filling it.
*/
virtual void getPluggedSocketList(std::vector<IModuleSocket*> &resultList) =0;
//@}
//@name Callback from module sockets
//@{
/** Called by a socket to inform this module that another
* module has been created OR has been made accessible (due to
* a gateway connection).
*/
// virtual void onModuleUp(IModuleProxy *moduleProxy) = 0;
/** Called by a socket to inform this module that another
* module has been deleted OR has been no more accessible (due to
* some gateway disconnection).
*/
// virtual void onModuleDown(IModuleProxy *moduleProxy) =0;
/** Called by a socket to receive a message in the module context.
* Basic implementation either forward directly to onProcessModuleMessage
* or queue the message in the coroutine message queue (when a synchronous
* messaging coroutine is started) for later dispatching.
*/
virtual void onReceiveModuleMessage(IModuleProxy *senderModuleProxy, const CMessage &message) =0;
/** Called internally by basic module imp to process the message by
* application code.
*/
// virtual void onProcessModuleMessage(IModuleProxy *senderModuleProxy, const CMessage &message) =0;
/** Called by a socket to inform this module that the security
* data attached to a proxy have changed.
*/
// virtual void onModuleSecurityChange(IModuleProxy *moduleProxy) =0;
/** Do a module operation invocation.
* Caller MUST be in a module task to call this method.
* The call is blocking until receptions of the operation
* result message (or detection of the dest module module is down)
*/
virtual void invokeModuleOperation(IModuleProxy *destModule, const NLNET::CMessage &opMsg, NLNET::CMessage &resultMsg)
throw (EInvokeFailed)
=0;
//@}
//@name Callback from module sockets management
//@{
enum TModuleSocketEvent
{
mse_plugged,
mse_before_unplug,
mse_unplugged,
};
virtual void onModuleSocketEvent(IModuleSocket *moduleSocket, TModuleSocketEvent eventType) =0;
/// Called just after a module as been effectively plugged into a socket
//@}
//@{
//@name internal method, should not be used by client code
virtual void _onModuleUp(IModuleProxy *removedProxy) =0;
virtual void _onModuleDown(IModuleProxy *removedProxy) =0;
//@}
};
const TModulePtr NullModule;
/** Base class for module identification data
* Application writer should derive from this
* class to create there own security information.
* Security information are bound to proxy data
* by a secured gateway.
*/
struct TSecurityData
{
// for factory system
struct TCtorParam
{
uint8 DataTag;
TCtorParam(uint8 dataTag)
: DataTag(dataTag)
{
}
};
/// An application defined identifier
uint8 DataTag;
/// Pointer to next security data item (or NULL)
TSecurityData *NextItem;
TSecurityData(const TCtorParam &params)
: DataTag(params.DataTag),
NextItem(NULL)
{
}
virtual ~TSecurityData()
{
if (NextItem != NULL)
delete NextItem;
}
virtual void serial(NLMISC::CMemStream &s) =0;
};
struct TUnknownSecurityData : public TSecurityData
{
uint8 RealDataTag;
std::vector<uint8> Data;
TUnknownSecurityData(uint8 realDataTag, uint32 size)
: TSecurityData(TSecurityData::TCtorParam(0xff)),
RealDataTag(realDataTag),
Data(size)
{
}
void serial(NLMISC::CMemStream &s)
{
for (uint i=0; i<Data.size(); ++i)
{
s.serial(Data[i]);
}
}
};
// NLMISC_REGISTER_OBJECT(TSecurityData, TUnknownSecurityData, uint8, 0xff);
/** This interface is implemented by the system
* and it give convenient access to distant module information
* like module name or id,
* it also provide a helper to send module message
* without knowing the gateway.
* Note that even collocated module (i.e. module created in the
* same process) must be accessed by module proxy or message
* send by through the socket interface.
*/
class IModuleProxy : public NLMISC::CRefCount
{
public:
virtual ~IModuleProxy() {}
/** Return the module ID. Each module has a local unique ID assigned
* by the manager during module creation.
* This ID is local because it is only valid inside a given process.
* When module are declared in another process, they receive a
* local ID that is different than the ID in their host process.
*/
virtual TModuleId getModuleProxyId() const =0;
/** Return the foreign id of the proxy.
* This is the proxy id of this module in the
* context at the outbound of the route.
* Note that if the module distance id 0, then
* this id is the module id and if the distance
* is 1, then this is the id of the local
* proxy for the module in his host process.
*
* Maybe you don't exactly understand the meaning of this
* id, what is sure is that you should never use it !
*/
virtual TModuleId getForeignModuleId() const =0;
/** Return the distance of this module in number of
* gateway to cross.
* Note that when a module is reachable via more than
* one route, the gateway always use the shortest path
* to communicate with the module.
*/
virtual uint32 getModuleDistance() const =0;
/** Return the IModule instance pointer.
* For local module proxies, this allow quick access to
* the real module instance.
* For foreign module proxies, this always return NULL.
* You should never access this methods if getModuleDistance()
* returned more than 0 (witch mean that the module is local).
*/
virtual IModule *getLocalModule() const =0;
/** Return a pointer to the route used to communicate
* with the module.
* For local module proxy, the return value is NULL
*/
virtual CGatewayRoute *getGatewayRoute() const =0;
/** Return the module name. Each module instance must have a unique
* name in the host process.
* If no mane is given during module creation, the module manager
* build a unique name from the module class and a number.
* Distant module name are always the FQMN, ie, it is the same as
* getModuleFullyQualifiedName()
*/
virtual const std::string &getModuleName() const =0;
/** Return the module class.
* For module proxy, this is always the fully qualified module name
*/
virtual const std::string &getModuleClassName() const =0;
/** Return the manifest of the module.
* The manifest is a simple string of undefined format.
* The manifest is used by a module to expose some intention
* or affinity (or whaterver else yuou could imagine) of the
* module.
*/
virtual const std::string &getModuleManifest() const =0;
/** Return the gateways interface by witch this module is accessible
* In some case, more than one gateway can be returned when there
* is multiple route to the same module.
*/
virtual IModuleGateway *getModuleGateway() const =0;
/** Send a message to the module.
* This method do the job of finding a valid socket to effectively send
* the message.
*/
virtual void sendModuleMessage(IModule *senderModule, const NLNET::CMessage &message)
throw (EModuleNotReachable)
=0;
/** Return the first item of the security item list
* If no security data are available, the method
* return NULL.
*/
virtual const TSecurityData *getFirstSecurityData() const = 0;
/** Look in the security data list for a block
* matching the specified tag.
* The first block having the tag is returned.
* If no block have the requested tag, NULL is returned.
*/
virtual const TSecurityData *findSecurityData(uint8 dataTag) const =0;
};
const TModuleProxyPtr NullModuleProxy;
/// Base class for module task (aka module coroutine)
class CModuleTask : public NLMISC::CCoTask
{
bool _FailInvoke;
protected:
///only derived class can use it
CModuleTask (class CModuleBase *module);
void initMessageQueue(class CModuleBase *module);
// A module having a module task always running MUST call this evenly to
// process message received by the module.
void flushMessageQueue(class CModuleBase *module);
public:
// for task blocked in 'invoke' to fail with an exception
void failInvoke()
{
_FailInvoke = true;
}
bool mustFailInvoke()
{
return _FailInvoke;
}
void resetFailInvoke()
{
_FailInvoke = false;
}
void processPendingMessage(class CModuleBase *module);
};
/// Template module task
template <class T>
class TModuleTask : public CModuleTask
{
public:
typedef void (T::*TMethodPtr)();
private:
T *_Module;
TMethodPtr _TaskMethod;
// override CTask::run
void run()
{
initMessageQueue(_Module);
try
{
// run the module task command control to module task method
(_Module->*_TaskMethod)();
}
catch (const NLMISC::Exception &e)
{
nlwarning("In module task '%s', exception '%e' thrown", typeid(this).name(), e.what());
}
catch (...)
{
nlwarning("In module task '%s', unknown exception thrown", typeid(this).name());
}
// finish the dispatch
flushMessageQueue(_Module);
}
public:
TModuleTask(T *module, void (T::*taskMethod)())
: CModuleTask(module),
_Module(module),
_TaskMethod(taskMethod)
{
}
};
// a special macro for easy module task startup
#define NLNET_START_MODULE_TASK(className, methodName) \
{ \
NLNET::TModuleTask<className> *task = new NLNET::TModuleTask<className>(this, &className::methodName); \
queueModuleTask(task); \
} \
/** Interface for module factory.
* Each module MUST provide a factory and
* register an instance of the factory in
* the module manager.
*/
class IModuleFactory : public NLMISC::CRefCount
{
protected:
/// The class name of the factored module
std::string _ModuleClassName;
/// The list of instantiated modules
std::set<TModulePtr> _ModuleInstances;
public:
/// Constructor, initialize the module class name
IModuleFactory(const std::string &moduleClassName);
/** Return the class name of the factored module */
virtual const std::string &getModuleClassName() const;
/** Return the initialization string helper */
virtual const std::string &getInitStringHelp() const =0;
/** Pretty simple method. Module initialization
* is done after construction, so there are
* no parameter at construction.
*/
virtual IModule *createModule() =0;
/** The module manager call this to delete a module instance.*/
virtual void deleteModule(IModule *module);
/** Virtual destructor.
* The destructor while unregister the module factory from the
* factory registry and ALL module factored
* will also be deleted.
*/
virtual ~IModuleFactory();
/** Called by concrete factory to initialise the factored object */
void registerModuleInFactory(TModulePtr module);
};
// const TModuleFactoryPtr NullModuleFactory;
template <class moduleClass>
class CModuleFactory : public IModuleFactory
{
public:
CModuleFactory(const std::string &moduleClassName)
: IModuleFactory(moduleClassName)
{}
virtual IModule *createModule()
{
IModule *module = new moduleClass;
registerModuleInFactory(module);
return module;
}
virtual const std::string &getInitStringHelp() const
{
return moduleClass::getInitStringHelp();
}
};
#define NLNET_REGISTER_MODULE_FACTORY(moduleClassName, registrationName) \
class moduleClassName##Factory : public NLNET::CModuleFactory<moduleClassName> \
{ \
public: \
static const std::string &theModuleClassName() \
{ \
static const std::string name(registrationName); \
return name; \
} \
\
moduleClassName##Factory() \
: NLNET::CModuleFactory<moduleClassName>(theModuleClassName()) \
{} \
};\
NLMISC_REGISTER_OBJECT_INDIRECT(NLNET::IModuleFactory, moduleClassName##Factory, std::string, registrationName)
//#define NLNET_MAKE_MODULE_FACTORY_TYPENAME(moduleClassName) moduleClassName##Factory
#define NLNET_GET_MODULE_FACTORY(moduleClassName) moduleClassName##Factory
class CModuleSocket;
/** Basic module implementation.
* Module implementor should derive from this class
* rather than rebuild a complete module from
* scratch (from IModule in fact).
* This class provide name and module registration,
* message dispatching to message handler,
* module socket interaction.
*/
class CModuleBase : public IModule, public NLMISC::ICommandsHandler
{
// Module manager is our friend coz it need to feed some field here
friend class CModuleManager;
friend class CModuleTask;
typedef std::set<IModuleSocket *> TModuleSockets;
/// This is the sockets where the module is plugged in
TModuleSockets _ModuleSockets;
typedef std::list<IModuleInterceptable*> TInterceptors;
/// This is the linked list of interceptor
TInterceptors _ModuleInterceptors;
//@{
//@name Synchronous messaging
typedef std::list<std::pair<IModuleProxy *, CMessage> > TMessageList;
/// dynamically allocated list of synchronous message to process
TMessageList _SyncMessages;
typedef std::list<CModuleTask*> TModuleTasks;
/// list of coroutine to run for synchronous messaging (the first in the list is running)
TModuleTasks _ModuleTasks;
typedef std::vector<IModuleProxy*> TInvokeStack;
/// stack of server module with pending invocation response
TInvokeStack _InvokeStack;
/// The current message to process sender
IModuleProxy *_CurrentSender;
/// The current message to process
const NLNET::CMessage *_CurrentMessage;
/// True if the current message processing have generated an exception
bool _CurrentMessageFailed;
/// task for message dispatching
CModuleTask *_MessageDispatchTask;
//@}
virtual void setFactory(IModuleFactory *factory);
virtual IModuleFactory *getFactory();
protected:
/// Keep track of the module factory
IModuleFactory *_ModuleFactory;
/// This is the local unique ID assigned to this module.
TModuleId _ModuleId;
/// This is the module name.
std::string _ModuleName;
/// This is the fully qualified module name
mutable std::string _FullyQualifedModuleName;
CModuleBase();
~CModuleBase();
virtual void registerInterceptor(IModuleInterceptable *interceptor);
virtual void unregisterInterceptor(IModuleInterceptable *interceptor);
const std::string &getCommandHandlerName() const;
TModuleId getModuleId() const;
const std::string &getModuleName() const;
const std::string &getModuleClassName() const;
const std::string &getModuleFullyQualifiedName() const;
std::string getModuleManifest() const;
/** Called by a socket to receive a message in the module context.
* Basic implementation either forward directly to onProcessModuleMessage
* or queue the message in the coroutine message queue (when a synchronous
* messaging coroutine is started) for later dispatching.
*/
virtual void onReceiveModuleMessage(IModuleProxy *senderModuleProxy, const CMessage &message);
/// The message dispatching task
void _receiveModuleMessageTask();
void queueModuleTask(CModuleTask *task);
CModuleTask *getActiveModuleTask();
public:
/// return the default init string (empty)
static const std::string &getInitStringHelp();
/** Search an interceptor in the interceptor list.
* By default, the method begin to search at the first interceptor.
* If 'previous' is set to a valid interceptor, then the search
* continue after it.
* the search is done by attempting a dynamic cast for
* each interceptor.
* If no interceptor match the required class, then NULL is
* returned.
*/
template <class T>
T *getInterceptor(T *dummy, IModuleInterceptable *previous = NULL)
{
TInterceptors::iterator it(_ModuleInterceptors.begin());
if (previous != NULL)
{
// advance up to next the previous
while (it != _ModuleInterceptors.end() && *it != previous)
++it;
if (it != _ModuleInterceptors.end())
++it;
}
while (it != _ModuleInterceptors.end())
{
IModuleInterceptable *mi = *it;
T *inter = dynamic_cast<T*>(mi);
if (inter != NULL)
{
dummy = inter;
return inter;
}
++it;
}
dummy = NULL;
return NULL;
}
protected:
// Init base module, init module name
bool initModule(const TParsedCommandLine &initInfo);
void plugModule(IModuleSocket *moduleSocket) throw (EModuleAlreadyPluggedHere);
void unplugModule(IModuleSocket *moduleSocket) throw (EModuleNotPluggedHere);
void getPluggedSocketList(std::vector<IModuleSocket*> &resultList);
void invokeModuleOperation(IModuleProxy *destModule, const NLNET::CMessage &opMsg, NLNET::CMessage &resultMsg) throw (EInvokeFailed);
void _onModuleUp(IModuleProxy *removedProxy);
void _onModuleDown(IModuleProxy *removedProxy);
bool _onProcessModuleMessage(IModuleProxy *senderModuleProxy, const CMessage &message);
/// base module command table
NLMISC_COMMAND_HANDLER_TABLE_BEGIN(CModuleBase)
NLMISC_COMMAND_HANDLER_ADD(CModuleBase, dump, "display information about module instance status", "no args")
NLMISC_COMMAND_HANDLER_ADD(CModuleBase, plug, "plug the module in a module socket", "<socket_name>")
NLMISC_COMMAND_HANDLER_ADD(CModuleBase, unplug, "unplug the module out of a module socket", "<socket_name>")
NLMISC_COMMAND_HANDLER_ADD(CModuleBase, sendPing, "send a ping message to another module using the first available route", "<addresseeModuleName>")
NLMISC_COMMAND_HANDLER_TABLE_END
NLMISC_CLASS_COMMAND_DECL(dump);
NLMISC_CLASS_COMMAND_DECL(plug);
NLMISC_CLASS_COMMAND_DECL(unplug);
NLMISC_CLASS_COMMAND_DECL(sendPing);
};
class CGatewayRoute;
class CModuleProxy : public IModuleProxy
{
friend class CModuleManager;
friend class CStandardGateway;
/// The gateway that received the module information
IModuleGateway *_Gateway;
/// The route to use for reaching the module
CGatewayRoute *_Route;
/// The module distance (in term of gateway to cross)
uint32 _Distance;
/// The module local ID
TModuleId _ModuleProxyId;
/// The module foreign ID, this is the module ID in case of a local proxy
TModuleId _ForeignModuleId;
/// the module instance in case of local module, NULL otherwise
TModulePtr _LocalModule;
/// The module class name;
NLMISC::TStringId _ModuleClassName;
/// The fully qualified module name.
NLMISC::TStringId _FullyQualifiedModuleName;
/// The module manifest
std::string _Manifest;
/// the list of security data
TSecurityData *_SecurityData;
/// Private constructor, only module manager instantiate module proxies
CModuleProxy(TModulePtr localModule, TModuleId localModuleId, const std::string &moduleClassName, const std::string &fullyQualifiedModuleName, const std::string &moduleManifest);
public:
const CGatewayRoute * getRoute() const
{
return _Route;
}
/** Return the module ID. Each module has a local unique ID assigned
* by the manager during module creation.
* This ID is local because it is only valid inside a given process.
* When module are declared in another process, they receive a
* local ID that is different than the ID in their host process.
*/
virtual TModuleId getModuleProxyId() const;
virtual TModuleId getForeignModuleId() const;
uint32 getModuleDistance() const;
IModule *getLocalModule() const;
CGatewayRoute *getGatewayRoute() const;
/** Return the module name. Each module instance must have a unique
* name in the host process.
* If no mane is given during module creation, the module manager
* build a unique name from the module class and a number.
* Distant module name are always the FQMN, ie, it is the same as
* getModuleFullyQualifiedName()
*/
virtual const std::string &getModuleName() const;
/// Return the module class.
virtual const std::string &getModuleClassName() const;
/// return the module manifest
virtual const std::string &getModuleManifest() const;
/** Return the gateways interface by witch this module is accessible.
*/
virtual IModuleGateway *getModuleGateway() const;
/** Send a message to the module.
*/
virtual void sendModuleMessage(IModule *senderModule, const NLNET::CMessage &message)
throw (EModuleNotReachable);
virtual const TSecurityData *getFirstSecurityData() const
{
return _SecurityData;
}
virtual const TSecurityData *findSecurityData(uint8 dataTag) const;
};
/** Utility class to do broadcast with a container of proxy pointer
*/
template <class PtrContainer>
class TBroadcastModuleMessage
{
void sendMessage(IModule *sender, const PtrContainer &addresseeProxies, const NLNET::CMessage &message)
{
typename PtrContainer::iterator first(addresseeProxies.begin()), last(addresseeProxies.end());
for (; first != last; ++first)
{
IModuleProxy *proxy = static_cast<IModuleProxy*>(*first);
proxy->sendModuleMessage(sender, message);
}
}
};
} // namespace NLNET
#endif // NL_FILE_MODULE_H