// NeL - MMORPG Framework // Copyright (C) 2010 Winch Gate Property Limited // // This source file has been modified by the following contributors: // Copyright (C) 2016 Jan BOON (Kaetemi) // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as // published by the Free Software Foundation, either version 3 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . #include "stdpacs.h" #include "nel/pacs/edge_collide.h" using namespace NLMISC; using namespace std; namespace NLPACS { static const float EdgeCollideEpsilon= 1e-5f; // *************************************************************************** void CEdgeCollide::make(const CVector2f &p0, const CVector2f &p1) { P0= p0; P1= p1; // translation axis of the edge. Dir= P1-P0; Dir.normalize(); A0= P0*Dir; A1= P1*Dir; // line equation. Norm.x= Dir.y; Norm.y= -Dir.x; C= - P0*Norm; } // *************************************************************************** CRational64 CEdgeCollide::testPointMove(const CVector2f &start, const CVector2f &end, TPointMoveProblem &moveBug) { /* To have a correct test (with no float precision problem): - test first if there is collision beetween the 2 edges: - test if first edge collide the other line. - test if second edge collide the other line. - if both true, yes, there is a collision. - compute time of collision. */ // *this must be a correct edge. if(P0==P1) { moveBug= EdgeNull; return -1; } // if no movement, no collision. if(start==end) return 1; // NB those edges are snapped (1/256 for edgeCollide, and 1/1024 for start/end), so no float problem here. // precision is 20 bits. CVector2f normEdge; CVector2f normMove; CVector2f deltaEdge; CVector2f deltaMove; // compute normal of the edge (not normalized, because no need, and for precision problem). deltaEdge= P1-P0; normEdge.x= -deltaEdge.y; normEdge.y= deltaEdge.x; // compute normal of the movement (not normalized, because no need, and for precision problem). deltaMove= end-start; normMove.x= -deltaMove.y; normMove.y= deltaMove.x; // distance from points of movment against edge line. Use double, because of multiplication. // precision is now 43 bits. double moveD0= (double)normEdge.x*(double)(start.x-P0.x) + (double)normEdge.y*(double)(start.y-P0.y); double moveD1= (double)normEdge.x*(double)(end.x -P0.x) + (double)normEdge.y*(double)(end.y -P0.y); // distance from points of edge against movement line. Use double, because of multiplication. // precision is now 43 bits. double edgeD0= (double)normMove.x*(double)(P0.x-start.x) + (double)normMove.y*(double)(P0.y-start.y); double edgeD1= (double)normMove.x*(double)(P1.x-start.x) + (double)normMove.y*(double)(P1.y-start.y); // If both edges intersect lines (including endpoints), there is a collision, else none. sint sgnMove0, sgnMove1; sgnMove0= fsgn(moveD0); sgnMove1= fsgn(moveD1); // special case if the 2 edges lies on the same line. if(sgnMove0==0 && sgnMove1==0) { // must test if there is a collision. if yes, problem. // project all the points on the line of the edge. // Use double because of multiplication. precision is now 43 bits. double moveA0= (double)deltaEdge.x*(double)(start.x-P0.x) + (double)deltaEdge.y*(double)(start.y-P0.y); double moveA1= (double)deltaEdge.x*(double)(end.x -P0.x) + (double)deltaEdge.y*(double)(end.y -P0.y); double edgeA0= 0; double edgeA1= (double)deltaEdge.x*(double)deltaEdge.x + (double)deltaEdge.y*(double)deltaEdge.y; // Test is there is intersection (endpoints included). if yes, return -1. else return 1 (no collision at all). if(moveA1>=edgeA0 && edgeA1>=moveA0) { moveBug= ParallelEdges; return -1; } else return 1; } // if on same side of the line=> there is no collision. if( sgnMove0==sgnMove1) return 1; // test edge against move line. sint sgnEdge0, sgnEdge1; sgnEdge0= fsgn(edgeD0); sgnEdge1= fsgn(edgeD1); // should not have this case, because tested before with (sgnMove==0 && sgnMove1==0). nlassert(sgnEdge0!=0 || sgnEdge1!=0); // if on same side of the line, no collision against this edge. if( sgnEdge0==sgnEdge1 ) return 1; // Here the edges intersect, but ensure that there is no limit problem. if(sgnEdge0==0 || sgnEdge1==0) { moveBug= TraverseEndPoint; return -1; } else if(sgnMove1==0) { moveBug= StopOnEdge; return -1; } else if(sgnMove0==0) { // this should not arrive. moveBug= StartOnEdge; return -1; } // Here, there is a normal collision, just compute it. // Because of Division, there is a precision lost in double. So compute a CRational64. // First, compute numerator and denominator in the highest precision. this is 1024*1024 because of prec multiplication. double numerator= (0-moveD0)*1024*1024; double denominator= (moveD1-moveD0)*1024*1024; sint64 numeratorInt= (sint64)numerator; sint64 denominatorInt= (sint64)denominator; /* nlassert(numerator == numeratorInt); nlassert(denominator == denominatorInt); */ /* if (numerator != numeratorInt) nlwarning("numerator(%f) != numeratorInt(%" NL_I64 "d)", numerator, numeratorInt); if (denominator != denominatorInt) nlwarning("denominator(%f) != denominatorInt(%" NL_I64 "d)", denominator, denominatorInt); */ return CRational64(numeratorInt, denominatorInt); } // *************************************************************************** static inline float testCirclePoint(const CVector2f &start, const CVector2f &delta, float radius, const CVector2f &point) { // factors of the qaudratic: at^2 + bt + c=0 float a,b,c; float dta; float r0, r1, res; CVector2f relC, relV; // As long as delta is not NULL (ensured in testCircleMove() ), this code should not generate Divide by 0. // compute quadratic.. relC= start-point; relV= delta; a= relV.x*relV.x + relV.y*relV.y; // a should be >0. BUT BECAUSE OF PRECISION PROBLEM, it may be ==0, and then cause // divide by zero (because b may be near 0, but not 0) if(a==0) { // in this case the move is very small. return 0 if the point is in the circle and if we go toward the point if(relC.norm()=0) { dta= (float)sqrt(dta); r0= (-b -dta)/(2*a); r1= (-b +dta)/(2*a); // since a>0, r0<=r1. if(r0>r1) swap(r0,r1); // if r1 is negative, then we are out and go away from this point. OK. if(r1<=0) { res= 1; } // if r0 is positive, then we may collide this point. else if(r0>=0) { res= min(1.f, r0); } else // r0<0 && r1>0. the point is already in the sphere!! { //nlinfo("COL: Point problem: %.2f, %.2f. b=%.2f", r0, r1, b); // we allow the movement only if we go away from this point. // this is true if the derivative at t=0 is >=0 (because a>0). if(b>0) res= 1; // go out. else res=0; } } else { // never hit this point along this movement. res= 1; } } return res; } // *************************************************************************** float CEdgeCollide::testCircleMove(const CVector2f &start, const CVector2f &delta, float radius, CVector2f &normal) { // If the movement is NULL, return 1 (no collision!) if( delta.isNull() ) return 1; // distance from point to line. double dist= start*Norm + C; // projection of speed on normal. double speed= delta*Norm; // test if the movement is against the line or not. bool sensPos= dist>0; bool sensSpeed= speed>0; // Does the point intersect the line? dist= fabs(dist) - radius; speed= fabs(speed); if( dist > speed ) return 1; // if not already in collision with the line, test when it collides. // =============================== if(dist>=0) { // if signs are equals, same side of the line, so we allow the circle to leave the line. if(sensPos==sensSpeed ) return 1; // if speed is 0, it means that movement is parralel to the line => never collide. if(speed==0) return 1; // collide the line, at what time. double t= dist/speed; // compute the collision position of the Circle on the edge. // this gives the center of the sphere at the collision point. CVector2d proj= CVector2d(start) + CVector2d(delta)*t; // must add radius vector. proj+= Norm * (sensSpeed?radius:-radius); // compute projection on edge. double aProj= proj*Dir; // if on the interval of the edge. if( aProj>=A0 && aProj<=A1) { // collision occurs on interior of the edge. the normal to return is +- Norm. if(sensPos) // if algebric distance of start position was >0. normal= Norm; else normal= -Norm; // return time of collision. return (float)t; } } // else, must test if circle collide segment at t=0. if yes, return 0. // =============================== else { // There is just need to test if projection of circle's center onto the line hit the segment. // This is not a good test to know if a circle intersect a segment, but other cases are // managed with test of endPoints of the segment after. float aProj= start*Dir; // if on the interval of the edge. if( aProj>=A0 && aProj<=A1) { // if signs are equals, same side of the line, so we allow the circle to leave the edge. /* Special case: do not allow to leave the edge if we are too much in the edge. It is important for CGlobalRetriever::testCollisionWithCollisionChains() because of the "SURFACEMOVE NOT DETECTED" Problem. Suppose we can walk on this chain SA/SB (separate Surface A/SurfaceB). Suppose we are near this edge, and on Surface SA, and suppose there is another chain SB/SC the circle collide with. If we return 1 (no collision), SB/SC won't be detected (because only SA/?? chains will be tested) and so the cylinder will penetrate SB/SC... This case arise at best if chains SA/SB and chain SB/SC do an angle of 45deg */ if(sensPos==sensSpeed && (-dist)<0.5*radius) { return 1; } else { // hit the interior of the edge, and sensPos!=sensSpeed. So must stop now!! // collision occurs on interior of the edge. the normal to return is +- Norm. if(sensPos) // if algebric distance of start position was >0. normal= Norm; else normal= -Norm; return 0; } } } // In this case, the Circle do not hit the edge on the interior, but may hit on borders. // =============================== // Then, we must compute collision sphere-points. float tmin, ttmp; // first point. tmin= testCirclePoint(start, delta, radius, P0); // second point. ttmp= testCirclePoint(start, delta, radius, P1); tmin= min(tmin, ttmp); // if collision occurs, compute normal of collision. if(tmin<1) { // to which point we collide? CVector2f colPoint= tmin==ttmp? P1 : P0; // compute position of the entity at collision. CVector2f colPos= start + delta*tmin; // and so we have this normal (the perpendicular of the tangent at this point). normal= colPos - colPoint; normal.normalize(); } return tmin; } // *************************************************************************** bool CEdgeCollide::testEdgeMove(const CVector2f &q0, const CVector2f &q1, const CVector2f &delta, float &tMin, float &tMax, bool &normalOnBox) { double a,b,cv,cc, d,e,f; CVector2d tmp; // compute D1 line equation of q0q1. bx - ay + c(t)=0, where c is function of time [0,1]. // =========================== tmp= q1 - q0; // NB: along time, the direction doesn't change. // Divide by norm()^2, so that a projection on this edge is true if the proj is in interval [0,1]. tmp/= tmp.sqrnorm(); a= tmp.x; b= tmp.y; // c= - q0(t)*CVector2d(b,-a). but since q0(t) is a function of time t (q0+delta*t), compute cv, and cc. // so c= cv*t + cc. cv= - CVector2d(b,-a)*delta; cc= - CVector2d(b,-a)*q0; // compute D2 line equation of P0P1. ex - dy + f=0. // =========================== tmp= P1 - P0; // Divide by norm()^2, so that a projection on this edge is true if the proj is in interval [0,1]. tmp/= tmp.sqrnorm(); d= tmp.x; e= tmp.y; f= - CVector2d(e,-d)*P0; // Solve system. // =========================== /* Compute the intersection I of 2 lines across time. We have the system: bx - ay + c(t)=0 ex - dy + f=0 which solve for: det= ae-bd (0 <=> // lines) x(t)= (d*c(t) - fa) / det y(t)= (e*c(t) - fb) / det */ // determinant of matrix2x2. double det= a*e - b*d; // if to near of 0. (take delta for reference of test). if(det==0 || fabs(det)1) return false; // else suppose "always valid". tu0 =tu1= 0; allU= true; } else { tu0= (0-uc)/uv; // t for u(t)=0 tu1= (1-uc)/uv; // t for u(t)=1 } // compute time interval for v(t). if(vv==0 || fabs(vv)1) return false; // else suppose "always valid". tv0 =tv1= 0; allV= true; } else { tv0= (0-vc)/vv; // t for v(t)=0 tv1= (1-vc)/vv; // t for v(t)=1 } // clip intervals. // =========================== // order time interval. if(tu0>tu1) swap(tu0, tu1); // now, [tu0, tu1] represent the time interval where line D2 hit the edge D1. if(tv0>tv1) swap(tv0, tv1); // now, [tv0, tv1] represent the time interval where line D1 hit the edge D2. normalOnBox= false; if(!allU && !allV) { // if intervals do not overlap, no collision. if(tu0>tv1 || tv0>tu1) return false; else { // compute intersection of intervals. tMin= (float)max(tu0, tv0); tMax= (float)min(tu1, tv1); // if collision of edgeCollide against the bbox. if(tv0>tu0) normalOnBox= true; } } else if(allU) { // intersection of Infinite and V interval. tMin= (float)tv0; tMax= (float)tv1; // if collision of edgeCollide against the bbox. normalOnBox= true; } else if(allV) { // intersection of Infinite and U interval. tMin= (float)tu0; tMax= (float)tu1; } else { // if allU && allV, this means delta is near 0, and so there is always collision. tMin= -1000; tMax= 1000; } return true; } // *************************************************************************** float CEdgeCollide::testBBoxMove(const CVector2f &start, const CVector2f &delta, const CVector2f bbox[4], CVector2f &normal) { // distance from center to line. float dist= start*Norm + C; // test if the movement is against the line or not. bool sensPos= dist>0; // if signs are equals, same side of the line, so we allow the circle to leave the line. /*if(sensPos==sensSpeed) return 1;*/ // Else, do 4 test edge/edge, and return Tmin. float tMin = 0.f, tMax = 0.f; bool edgeCollided= false; bool normalOnBox= false; CVector2f boxNormal(0.f, 0.f); for(sint i=0;i<4;i++) { float t0, t1; bool nob; CVector2f a= bbox[i]; CVector2f b= bbox[(i+1)&3]; // test move against this edge. if(testEdgeMove(a, b, delta, t0, t1, nob)) { if(edgeCollided) { tMin= min(t0, tMin); tMax= max(t1, tMax); } else { edgeCollided= true; tMin= t0; tMax= t1; } // get normal of box against we collide. if(tMin==t0) { normalOnBox= nob; if(nob) { CVector2f dab; // bbox must be CCW. dab= b-a; // the normal is computed so that the vector goes In the bbox. boxNormal.x= -dab.y; boxNormal.y= dab.x; } } } } // if collision occurs,and int the [0,1] interval... if(edgeCollided && tMin<1 && tMax>0) { // compute normal of collision. if(normalOnBox) { // assume collsion is an endpoint of the edge against the bbox. normal= boxNormal; } else { // assume collision occurs on interior of the edge. the normal to return is +- Norm. if(sensPos) // if algebric distance of start position was >0. normal= Norm; else normal= -Norm; } // compute time of collison. if(tMin>0) // return time of collision. return tMin; else { // The bbox is inside the edge, at t==0. test if it goes out or not. // accept only if we are much near the exit than the enter. /* NB: 0.2 is an empirical value "which works well". Normally, 1 is the good value, but because of the "SURFACEMOVE NOT DETECTED" Problem (see testCircleMove()), we must be more restrictive. */ if( tMax<0.2*(-tMin) ) return 1; else return 0; } } else return 1; } // *************************************************************************** bool CEdgeCollide::testBBoxCollide(const CVector2f bbox[4]) { // clip the edge against the edge of the bbox. CVector2f p0= P0, p1= P1; for(sint i=0; i<4; i++) { CVector2f a= bbox[i]; CVector2f b= bbox[(i+1)&3]; CVector2f delta= b-a, norm; // sign is important. bbox is CCW. normal goes OUT the bbox. norm.x= delta.y; norm.y= -delta.x; float d0= (p0-a)*norm; float d1= (p1-a)*norm; // if boths points are out this plane, no collision. if( d0>0 && d1>0) return false; // if difference, must clip. if( d0>0 || d1>0) { CVector2f intersect= p0 + (p1-p0)* ((0-d0)/(d1-d0)); if(d1>0) p1= intersect; else p0= intersect; } } // if a segment is still in the bbox, collision occurs. return true; } } // NLPACS