Changed: #878 Fix typos in comments/code

hg/feature/sound
kervala 14 years ago
parent 0f5605e537
commit cb73ccd99a

@ -346,4 +346,4 @@ CGenericXmlMsgHeaderManager::CNode::~CNode()
delete Nodes[i];
Nodes[i] = NULL;
}
}
}

@ -14,8 +14,6 @@
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef RY_PEOPLE_H
#define RY_PEOPLE_H

@ -14,7 +14,6 @@
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "stdpch.h"
#include "people_pd.h"

@ -14,7 +14,6 @@
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef PEOPLE_PD_H
#define PEOPLE_PD_H

@ -604,8 +604,8 @@ inline CPersistentDataRecord::CArg::CArg(const std::string& type,const std::stri
case UINT32: _Value.i32=NLMISC::CSString(value).atoi(); break;
case SINT64: _Value.i64=NLMISC::atoiInt64(value.c_str()); break;
case UINT64: _Value.i64=NLMISC::atoiInt64(value.c_str()); break;
case FLOAT32: NLMISC::fromString(value, _Value.f32); break;
case FLOAT64: NLMISC::fromString(value, _Value.f64); break;
case FLOAT32: NLMISC::fromString(value, _Value.f32); break;
case FLOAT64: NLMISC::fromString(value, _Value.f64); break;
case STRING: _Value.i32=pdr.addString(value); _String=value; break;
case EXTEND_TYPE:
switch(_Value.ExType)

@ -14,6 +14,13 @@
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
/**
* This file contains an extension of the 'persistent data record' system
* It represents the contents of arbitrary CPersistentDataRecord records in a tree structure
* that can be interrogated or written to / read from easy to read text files
*
**/
#ifndef PERSISTENT_DATA_TREE_H
#define PERSISTENT_DATA_TREE_H

@ -208,7 +208,7 @@ namespace R2
void fromSkillName(const std::string &skillName)
{
// we considere the lenght of the skill name to be proportional to the level
// we considere the length of the skill name to be proportional to the level
if (skillName.size() < 2)
{
// skill name too short

@ -26,11 +26,11 @@
//=======================================================================
CWeatherFunctionParamsSheetBase::CWeatherFunctionParamsSheetBase()
: DayLenght(24),
CycleLenght(25),
CWeatherFunctionParamsSheetBase::CWeatherFunctionParamsSheetBase():
DayLength(24),
CycleLength(25),
MinThunderPeriod(1.f),
ThunderLenght(0.5f),
ThunderLength(0.5f),
CloudWindSpeedFactor(1.f),
CloudMinSpeed(0.f)
{
@ -46,10 +46,10 @@ void CWeatherFunctionParamsSheetBase::readGeorges(const NLGEORGES::UForm *form,
//=======================================================================
void CWeatherFunctionParamsSheetBase::build(const NLGEORGES::UFormElm &item)
{
item.getValueByName(DayLenght, "DayNumHours");
item.getValueByName(CycleLenght, "CycleLenght");
item.getValueByName(DayLength, "DayNumHours");
item.getValueByName(CycleLength, "CycleLenght");
item.getValueByName(MinThunderPeriod, "MinThunderPeriod");
item.getValueByName(ThunderLenght, "ThunderLenght");
item.getValueByName(ThunderLength, "ThunderLenght");
item.getValueByName(CloudWindSpeedFactor, "CloudWindSpeedFactor");
item.getValueByName(CloudMinSpeed, "CloudMinSpeed");
}
@ -57,10 +57,10 @@ void CWeatherFunctionParamsSheetBase::build(const NLGEORGES::UFormElm &item)
//=======================================================================
void CWeatherFunctionParamsSheetBase::serial(class NLMISC::IStream &f) throw(NLMISC::EStream)
{
f.serial(DayLenght);
f.serial(CycleLenght);
f.serial(DayLength);
f.serial(CycleLength);
f.serial(MinThunderPeriod);
f.serial(ThunderLenght);
f.serial(ThunderLength);
f.serial(CloudWindSpeedFactor);
f.serial(CloudMinSpeed);
}

@ -37,11 +37,11 @@ namespace NLMISC
class CWeatherFunctionParamsSheetBase
{
public:
uint32 DayLenght; // lenght of day, in hours
uint32 CycleLenght; // lenght of a cycle, in hours
uint32 DayLength; // length of day, in hours
uint32 CycleLength; // length of a cycle, in hours
//
float MinThunderPeriod; // Min thunder period, in s.
float ThunderLenght; // Lenght of a thunder strike, in s.
float ThunderLength; // Length of a thunder strike, in s.
//
float CloudWindSpeedFactor;
float CloudMinSpeed;

@ -64,18 +64,18 @@ float CPredictWeather::predictWeather(uint64 day, float hour, const CWeatherFunc
{
return 1.f;
}
if (wfp.DayLenght <= 0.f || wfp.CycleLenght == 0) return 0.f;
if (wfp.DayLength <= 0.f || wfp.CycleLength == 0) return 0.f;
nlassert(hour >= 0);
day += (uint64) (hour / (float) wfp.DayLenght);
hour = fmodf(hour, (float) wfp.DayLenght);
day += (uint64) (hour / (float) wfp.DayLength);
hour = fmodf(hour, (float) wfp.DayLength);
// test in which cycle we are, we use this as a seed to a random fct to get reproductible behaviour
nlassert(wfp.CycleLenght != 0.f);
nlassert(wfp.CycleLength != 0.f);
float weatherValue;
uint64 currHour = (day * wfp.DayLenght) + (uint) hour;
uint64 cycle = currHour / wfp.CycleLenght;
uint64 cycleStartHour = cycle * wfp.CycleLenght; // global start hour of the cycle
uint64 currHour = (day * wfp.DayLength) + (uint) hour;
uint64 cycle = currHour / wfp.CycleLength;
uint64 cycleStartHour = cycle * wfp.CycleLength; // global start hour of the cycle
// the last hour of each cycle does a transition
if (currHour - cycleStartHour < wfp.CycleLenght - 1)
if (currHour - cycleStartHour < wfp.CycleLength - 1)
{
// not a transition
EGSPD::CSeason::TSeason season = CRyzomTime::getSeasonByDay((uint32) day);
@ -85,7 +85,7 @@ float CPredictWeather::predictWeather(uint64 day, float hour, const CWeatherFunc
{
// this is a transition
EGSPD::CSeason::TSeason season = CRyzomTime::getSeasonByDay((uint32) day);
EGSPD::CSeason::TSeason nextSeason = CRyzomTime::getSeasonByDay((uint32) ((cycleStartHour + wfp.CycleLenght) & 0xFFFFFFFF) / wfp.DayLenght);
EGSPD::CSeason::TSeason nextSeason = CRyzomTime::getSeasonByDay((uint32) ((cycleStartHour + wfp.CycleLength) & 0xFFFFFFFF) / wfp.DayLength);
float blendFactor = (float) fmod(hour, 1);
weatherValue = blendFactor * getCycleWeatherValue(cycle + 1, wf[nextSeason]) + (1.f - blendFactor) * getCycleWeatherValue(cycle, wf[season]);
}
@ -104,9 +104,9 @@ using namespace std;
inline bool operator == (const CWeatherFunctionParamsSheetBase &lhs, const CWeatherFunctionParamsSheetBase &rhs)
{
return lhs.CycleLenght == rhs.CycleLenght &&
return lhs.CycleLength == rhs.CycleLength &&
lhs.MaximaRatio == rhs.MaximaRatio &&
lhs.DayLenght == rhs.DayLenght &&
lhs.DayLength == rhs.DayLength &&
lhs.MaxARatio == rhs.MaxARatio &&
lhs.MaxDRatio == rhs.MaxDRatio &&
lhs.MinDRatio == rhs.MinDRatio;
@ -190,15 +190,15 @@ static float getFairWeatherValue(EGSPD::CSeason::TSeason season, const CWeatherF
/*
static float getCycleStartValue(uint64 day, uint64 totalHour, const CWeatherFunctionParamsSheetBase &wfp, const CWeatherFunction wf[EGSPD::CSeason::Invalid])
{
uint64 cycle = totalHour / wfp.CycleLenght;
uint64 cycleStartHour = cycle * wfp.CycleLenght;
uint64 dayStartHour = day * wfp.DayLenght; // the global hour at which the day starts
uint64 cycle = totalHour / wfp.CycleLength;
uint64 cycleStartHour = cycle * wfp.CycleLength;
uint64 dayStartHour = day * wfp.DayLength; // the global hour at which the day starts
EGSPD::CSeason::TSeason season = CRyzomTime::getSeasonByDay((uint32)day);
// When a weather cycle starts at a season, and end at another one, this is a special case where Weather value must be set to "fair weather"
uint64 dayForEndCycle = (cycleStartHour + wfp.CycleLenght) / wfp.DayLenght;
uint64 dayForEndCycle = (cycleStartHour + wfp.CycleLength) / wfp.DayLength;
if (CRyzomTime::getSeasonByDay((uint32)day) != season)
{
// yes this is a transition cycle, so return the fair weather value for the previous season
@ -255,15 +255,15 @@ float CPredictWeather::predictWeather(uint64 day, float hour, const CWeatherFunc
{
return 1.f;
}
if (wfp.DayLenght <= 0.f || wfp.CycleLenght == 0) return 0.f;
if (wfp.DayLength <= 0.f || wfp.CycleLength == 0) return 0.f;
nlassert(hour >= 0);
day += (uint64) (hour / (float) wfp.DayLenght);
hour = fmodf(hour, (float) wfp.DayLenght);
day += (uint64) (hour / (float) wfp.DayLength);
hour = fmodf(hour, (float) wfp.DayLength);
// test in which cycle we are, we use this as a seed to a random fct to get reproductible behaviour
nlassert(wfp.CycleLenght != 0.f);
uint64 currHour = (day * wfp.DayLenght) + (uint) hour;
uint64 cycle = currHour / wfp.CycleLenght;
uint64 cycleStartHour = cycle * wfp.CycleLenght; // global start hour of the cycle
nlassert(wfp.CycleLength != 0.f);
uint64 currHour = (day * wfp.DayLength) + (uint) hour;
uint64 cycle = currHour / wfp.CycleLength;
uint64 cycleStartHour = cycle * wfp.CycleLength; // global start hour of the cycle
// cache previous results, this avoid to recompute the weather function
static const CFctCtrlPoint *lastFct;
static uint lastNumPoints;
@ -282,7 +282,7 @@ float CPredictWeather::predictWeather(uint64 day, float hour, const CWeatherFunc
lastWf = wf;
// special case : see if the weather is at a transition of season
uint64 endCycleDay = (cycleStartHour + wfp.CycleLenght) / wfp.DayLenght; // which day is it at the end of the cycle
uint64 endCycleDay = (cycleStartHour + wfp.CycleLength) / wfp.DayLength; // which day is it at the end of the cycle
EGSPD::CSeason::TSeason nextSeason = CRyzomTime::getSeasonByDay((uint32)endCycleDay);
if (nextSeason != season)
{
@ -291,19 +291,19 @@ float CPredictWeather::predictWeather(uint64 day, float hour, const CWeatherFunc
static CFctCtrlPoint transitionFct[4];
transitionFct[0].X = 0.f;
transitionFct[0].Y = getFairWeatherValue(season, wf);
transitionFct[1].X = (float) (endCycleDay * wfp.DayLenght - cycleStartHour);
transitionFct[1].X = (float) (endCycleDay * wfp.DayLength - cycleStartHour);
transitionFct[1].Y = getFairWeatherValue(season, wf);;
transitionFct[2].X = transitionFct[1].X;
transitionFct[2].Y = getFairWeatherValue(nextSeason, wf);;
transitionFct[3].X = (float) wfp.CycleLenght;
transitionFct[3].Y = getCycleStartValue(day, cycleStartHour + wfp.CycleLenght, wfp, wf); // start value for the next cycle
transitionFct[3].X = (float) wfp.CycleLength;
transitionFct[3].Y = getCycleStartValue(day, cycleStartHour + wfp.CycleLength, wfp, wf); // start value for the next cycle
lastFct = transitionFct;
lastNumPoints = sizeof(transitionFct) / sizeof(transitionFct[0]);
weatherCycle = SeasonTransition;
}
else
{
uint64 dayStartHour = day * wfp.DayLenght; // the global hour at which the day starts
uint64 dayStartHour = day * wfp.DayLength; // the global hour at which the day starts
NLMISC::CRandom randomGenerator;
// set seed
@ -328,7 +328,7 @@ float CPredictWeather::predictWeather(uint64 day, float hour, const CWeatherFunc
// For each hour, we see if there is mist, and set the function accordingly
static std::vector<CFctCtrlPoint> lpFct;
lpFct.resize(wfp.CycleLenght);
lpFct.resize(wfp.CycleLength);
float fairWeatherValue = getFairWeatherValue(season, wf);
float A;
@ -352,14 +352,14 @@ float CPredictWeather::predictWeather(uint64 day, float hour, const CWeatherFunc
// starts with fair weather
lpFct[0] = CFctCtrlPoint(0.f, fairWeatherValue);
//
uint currHour = (uint) (cycleStartHour - day * wfp.DayLenght);
uint currHour = (uint) (cycleStartHour - day * wfp.DayLength);
// for each hour, see if mist is needed
for(uint k = 1; k < wfp.CycleLenght - 1; ++k)
for(uint k = 1; k < wfp.CycleLength - 1; ++k)
{
++currHour;
if (currHour == wfp.DayLenght) currHour = 0;
if (currHour == wfp.DayLength) currHour = 0;
if (k == 0 || k == (wfp.CycleLenght - 1))
if (k == 0 || k == (wfp.CycleLength - 1))
{
lpFct[k] = CFctCtrlPoint((float) k, fairWeatherValue);
}
@ -382,8 +382,8 @@ float CPredictWeather::predictWeather(uint64 day, float hour, const CWeatherFunc
}
// ends with start value of next cycle
float endValue = getCycleStartValue(day, cycleStartHour + wfp.CycleLenght, wfp, wf);
lpFct[wfp.CycleLenght - 1] = CFctCtrlPoint((float) wfp.CycleLenght - 1, endValue);
float endValue = getCycleStartValue(day, cycleStartHour + wfp.CycleLength, wfp, wf);
lpFct[wfp.CycleLength - 1] = CFctCtrlPoint((float) wfp.CycleLength - 1, endValue);
lastFct = &lpFct[0];
lastNumPoints = lpFct.size();
@ -417,18 +417,18 @@ float CPredictWeather::predictWeather(uint64 day, float hour, const CWeatherFunc
//
//
float A = randomGenerator.frand(wfp.MaxARatio) * wfp.CycleLenght;
float A = randomGenerator.frand(wfp.MaxARatio) * wfp.CycleLength;
float C = randomGenerator.frand(1.f);
if (wf)
{
C *= wf[season].LowPressureValueFactor;
}
float D = 2.f * (wfp.CycleLenght - A) / 3.f;
float D = 2.f * (wfp.CycleLength - A) / 3.f;
float E = C * wfp.MaximaRatio;
float F = wfp.MinDRatio + randomGenerator.frand(wfp.MaxDRatio - wfp.MinDRatio);
float startValue = getCycleStartValue(day, cycleStartHour, wfp, wf);
float endValue = getCycleStartValue(day, cycleStartHour + wfp.CycleLenght, wfp, wf);
float endValue = getCycleStartValue(day, cycleStartHour + wfp.CycleLength, wfp, wf);
static CFctCtrlPoint hpFct[6];
hpFct[0].X = 0.f;
@ -441,7 +441,7 @@ float CPredictWeather::predictWeather(uint64 day, float hour, const CWeatherFunc
hpFct[3].Y = startValue;
hpFct[4].X = 1.25f * D + A;
hpFct[4].Y = startValue + C;
hpFct[5].X = (float) wfp.CycleLenght;
hpFct[5].X = (float) wfp.CycleLength;
hpFct[5].Y = endValue;
lastFct = hpFct;
@ -504,7 +504,7 @@ void CPredictWeather::generateWeatherStats(const std::string &fileName, const CW
// Take 2000 sample of weather state along the day
for(k = 0; k < numSamples; ++k)
{
float hour = wfp.DayLenght / (float) numSamples;
float hour = wfp.DayLength / (float) numSamples;
float weatherValue = predictWeather(day, hour, wfp, wf);
if (wf[season].getNumWeatherSetups() == 0.f) continue;
if (wf[season].getNumWeatherSetups() == 1.f)

@ -210,4 +210,4 @@ void CWeatherSetupSheetBase::serial(class NLMISC::IStream &f) throw(NLMISC::EStr
std::string setupName = NLMISC::CStringMapper::unmap(SetupName);
f.serial(setupName);
}
}
}

Loading…
Cancel
Save